Skip to main content
Log in

Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Sm-doped In2O3 porous nanotubes have been successfully fabricated by the single-capillary electrospinning method followed by calcination. The as-synthesized porous nanotubes were investigated by X-ray powder diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscope (SEM), Raman spectra and X-ray photoelectron spectroscopy (XPS). It can be seen in SEM images that the surface of nanotubes is distributed with numerous pores. Gas sensing investigation reveals that Sm-doped In2O3 porous nanotubes possess high-performance formaldehyde sensing properties. The response of gas sensors based on Sm-doped In2O3 porous nanotubes was 54.37 towards 100 ppm formaldehyde at 240 °C, which was 5 times larger than that of pure In2O3 porous nanotubes (10.87). The response and recovery times to 100 ppm formaldehyde were 9 and 40 s, respectively. Moreover, even at low concentration of 100 ppb formaldehyde, a detectable response of 2.1 can be observed. Furthermore, Sm-doped In2O3 porous nanotube gas sensors have excellent selectivity to formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Zhao, L. Ma, Q. Zhang, C. Wang, X. Xu, J. Nanomater. 2015, 1 (2015). doi:10.1155/2015/850147

    Google Scholar 

  2. L.I. Hernández, R. Godin, J.J. Bergkamp et al., J. Phys. Chem. B 117, 4568 (2013). doi:10.1021/jp3086792

    Article  Google Scholar 

  3. X. Li, H. Zhang, C. Feng et al., RSC Adv. 4, 27552 (2014). doi:10.1039/c4ra03307h

    Article  Google Scholar 

  4. Q. Qi, P.-P. Wang, J. Zhao et al., Sens. Actuators B: Chem. 194, 440 (2014). doi:10.1016/j.snb.2013.12.115

    Article  Google Scholar 

  5. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, ACS Appl. Mater. Interfaces 5, 2013 (2013). doi:10.1021/am3028553

    Article  Google Scholar 

  6. J. Gao, L. Wang, K. Kan et al., J. Mater. Chem. A 2, 949 (2014). doi:10.1039/c3ta13943c

    Article  Google Scholar 

  7. P.-J. Yao, J. Wang, Q. Qiao, H.-Y. Du, J. Mater. Sci. 50, 1338 (2014). doi:10.1007/s10853-014-8694-1

    Article  Google Scholar 

  8. A. Chaudhary, S. Hellweg, Environ. Sci. Technol. 48, 14607 (2014). doi:10.1021/es5045024

    Article  Google Scholar 

  9. A. Afkhami, H. Bagheri, T. Madrakian, Desalination 281, 151 (2011). doi:10.1016/j.desal.2011.07.052

    Article  Google Scholar 

  10. A. Afkhami, H. Bagheri, Microchim. Acta 176, 217 (2011). doi:10.1007/s00604-011-0715-z

    Article  Google Scholar 

  11. C. Bosetti, J.K. McLaughlin, R.E. Tarone, E. Pira, C. La Vecchia, Ann. Oncol. 19, 29 (2007). doi:10.1093/annonc/mdm202

    Article  Google Scholar 

  12. T. Guo, Y. Luo, Y. Zhang, Y.-H. Lin, C.-W. Nan, J. Appl. Phys. 116, 044309 (2014). doi:10.1063/1.4890938

    Article  Google Scholar 

  13. C. Zhao, W. Hu, Z. Zhang, J. Zhou, X. Pan, E. Xie, Sens. Actuators B: Chem. 195, 486 (2014). doi:10.1016/j.snb.2014.01.084

    Article  Google Scholar 

  14. W. Li, L.-S. Zhang, Q. Wang et al., J. Mater. Chem. 22, 15342 (2012). doi:10.1039/c2jm32031b

    Article  Google Scholar 

  15. W. Tang, J. Wang, P. Yao, X. Li, Sens. Actuators B: Chem. 192, 543 (2014). doi:10.1016/j.snb.2013.11.003

    Article  Google Scholar 

  16. L xu, B Dong, Y Wang, et al. (2010) Journal of Physical Chemstry C 114: 7

  17. L. Wang, X. Xu, Ceram. Int. 41, 7687 (2015). doi:10.1016/j.ceramint.2015.02.097

    Article  Google Scholar 

  18. S. Xu, J. Gao, L. Wang et al., Nanoscale 7, 14643 (2015). doi:10.1039/c5nr03796d

    Article  Google Scholar 

  19. C. Zhao, B. Huang, E. Xie, J. Zhou, Z. Zhang, Sens. Actuators B: Chem. 207, 313 (2015). doi:10.1016/j.snb.2014.10.087

    Article  Google Scholar 

  20. C. Liu, X. Chi, X. Liu, S. Wang, J. Alloy. Compd. 616, 208 (2014). doi:10.1016/j.jallcom.2014.07.112

    Article  Google Scholar 

  21. M. Tiemann, Chem. —Eur. J. 13, 8376 (2007). doi:10.1002/chem.200700927

    Article  Google Scholar 

  22. Y.-B. Zhang, J. Yin, L. Li, L.-X. Zhang, L.-J. Bie, Sens. Actuators B: Chem. 202, 500 (2014). doi:10.1016/j.snb.2014.05.111

    Article  Google Scholar 

  23. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Adv. Mater. 23, 2675 (2011). doi:10.1002/adma.201100511

    Article  Google Scholar 

  24. H.T. Giang, H.T. Duy, P.Q. Ngan et al., Sens. Actuators B: Chem. 158, 246 (2011). doi:10.1016/j.snb.2011.06.013

    Article  Google Scholar 

  25. L. Liu, C. Liu, S. Li et al., Sens. Actuators B: Chem. 177, 893 (2013). doi:10.1016/j.snb.2012.11.106

    Article  Google Scholar 

  26. G.F. Pérez-Sánchez, F. Chávez, D. Cortés-Salinas et al., Vacuum 107, 236 (2014). doi:10.1016/j.vacuum.2014.02.012

    Article  Google Scholar 

  27. L.X. Zhang, Y.C. Zhang, M. Zhang, Mater. Chem. Phys. 118, 223 (2009). doi:10.1016/j.matchemphys.2009.07.047

    Article  Google Scholar 

  28. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2009). doi:10.1016/j.snb.2015.04.083

    Article  Google Scholar 

  29. D. Han, P. Song, S. Zhang, H. Zhang, Q. Xu, Q. Wang, Sens. Actuators B: Chem. 216, 488 (2015). doi:10.1016/j.snb.2015.04.083

    Article  Google Scholar 

  30. B.T. Sone, E. Manikandan, A. Gurib-Fakim, M. Maaza, J. Alloy. Compd. 650, 357 (2015). doi:10.1016/j.jallcom.2015.07.272

    Article  Google Scholar 

  31. C. Dong, X. Liu, B. Han, S. Deng, X. Xiao, Y. Wang, Sens. Actuators B: Chem. 224, 193 (2016). doi:10.1016/j.snb.2015.09.107

    Article  Google Scholar 

  32. H. Ren, W. Zhao, L. Wang, S.O. Ryu, C. Gu, J. Alloy. Compd. 653, 611 (2015). doi:10.1016/j.jallcom.2015.09.065

    Article  Google Scholar 

  33. Y. Lin, W. Wei, Y. Li et al., J. Alloy. Compd. 651, 690 (2015). doi:10.1016/j.jallcom.2015.08.174

    Article  Google Scholar 

  34. C. Dong, Q. Li, G. Chen, X. Xiao, Y. Wang, Sens. Actuators B: Chem. 220, 171 (2015). doi:10.1016/j.snb.2015.05.056

    Article  Google Scholar 

  35. H. Shan, C. Liu, L. Liu et al., Sens. Actuators B: Chem. 184, 243 (2013). doi:10.1016/j.snb.2013.04.088

    Article  Google Scholar 

  36. X. Chi, C. Liu, L. Liu et al., Mater. Sci. Semicond. Process. 18, 160 (2014). doi:10.1016/j.mssp.2013.11.016

    Article  Google Scholar 

  37. G.X. Wan, S.Y. Ma, X.W. Sun et al., Mater. Lett. 145, 48 (2015). doi:10.1016/j.matlet.2015.01.085

    Article  Google Scholar 

  38. L. Xu, H. Song, B. Dong, Y. Wang, J. Chen, X. Bai, Inorg. Chem. 49, 10590 (2010). doi:10.1021/ic101602a

    Article  Google Scholar 

  39. G.-Y. Adachi, N. Imanaka, Chem. Rev. 98, 36 (1998)

    Article  Google Scholar 

  40. C. Li, C. Feng, F. Qu et al., Sens. Actuators B: Chem. 207, 90 (2015). doi:10.1016/j.snb.2014.10.035

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Jilin Provincial Science and Technology Department (No. 20140204027GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, X., Xie, F. et al. Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties. J Mater Sci: Mater Electron 27, 9870–9876 (2016). https://doi.org/10.1007/s10854-016-5055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5055-7

Keywords

Navigation