Skip to main content
Log in

Influence of nitrogen gas flow rate on the structural, morphological and electrical properties of sputtered TiN films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, nanocrystalline titanium nitride (TiN) films have been deposited by reactive DC magnetron sputtering technique on the Si/SiO2 (100) substrates. The influence of nitrogen gas flow rate [0, 3, 5, 7 and 9 sccm (standard cubic centimeter per minute)] on the structural, morphological and electrical properties of the nanocrystalline TiN films has been studied. As-deposited TiN films have been characterized by using X-ray diffraction (XRD), XPS (X-ray photoelectron spectroscopy), FESEM (field emission scanning electron microscopy) and four point probe resistivity measurement, respectively. The XRD patterns revealed the HCP symmetry for pure Ti (N2 = 0 sccm) with (002) preferred orientations, and the FCC symmetry for TiN (N2 = 3, 5, 7 and 9 sccm) films having (111) preferred orientations. The lattice parameters were found to be a = 2.950 Ǻ, c = 4.681Ǻ for the Ti (N2 = 0 sccm) film and a = 4.250Å for the TiN films. The presence of different phases such as TiN and TiO2 were confirmed by XPS analysis. The FESEM images showed a smooth morphology of the film with columnar grain structures. The grain size of the TiN films was found to decrease from 22 to 15 nm as the nitrogen flow rate is increased from 0 to 9 sccm. The electrical resistivity measurement showed that the resistivity of the film increased from 11 × 10−6 to 17 × 10−6 Ohm cm on increasing nitrogen flow rate from 3 to 9 sccm, having the lowest resistivity of 11 × 10−6 Ohm cm for the film deposited at 3 sccm nitrogen flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Veprek, G.J. Maritza, V. Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 476, 1 (2005)

    Article  CAS  Google Scholar 

  2. P. Patsalas, C. Charitidis, S. Logothetidis, C.A. Dimitriadis, O. Valassiades, J. Appl. Phys. 86, 5296 (1999)

    Article  CAS  Google Scholar 

  3. S.H. Chung, M. Lachab, T. Wang, Y. Lacroix, D. Basak, Q. Fareed, Y. Kawakami, K. Nishino, S. Sakai, Jpn. J. Appl. Phys. 39, 4749 (2000)

    Article  CAS  Google Scholar 

  4. G. Gagnon, J.F. Currie, C. Beique, J.L. Brebner, S.G. Gujrathi, L. Onlett, J. Appl. Phys. 75, 1565 (1994)

    Article  CAS  Google Scholar 

  5. I. Petrov, L. Hultman, U. Helmersson, J.E. Sundgren, J.E. Greene, Thin Solid Films 169, 299 (1989)

    Article  CAS  Google Scholar 

  6. N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, F. Ahmed, Mater. Chem. Phys. 134, 839 (2012)

    Article  CAS  Google Scholar 

  7. P. Patsalas, C. Charitidis, S. Logothetidis, Surf. Coat. Technol. 125, 335 (2000)

    Article  CAS  Google Scholar 

  8. Y.W. Bae, Y.W. Lee, T.S. Bessman, T.J. Blau, Appl. Phys. Lett. 65, 1895 (1995)

    Article  Google Scholar 

  9. N. Arshi, J. Lu, B.H. Koo, C.G. Lee, F. Ahmed, Appl. Surf. Sci. 258, 8498 (2012)

    Article  CAS  Google Scholar 

  10. K. Yokota, K. Nakamura, T. Kasuya, S. Tamura, T. Sugimoto, K. Akamastsu, K. Nakao, F. Miyashita, Surf. Coat. Technol. 158–159, 690 (2002)

    Article  Google Scholar 

  11. H.E. Cheng, M.H. Hon, J. Appl. Phys. 79, 8047 (1996)

    Article  CAS  Google Scholar 

  12. S. Chatterjee, S. Chandrashekhar, T.S. Sudarshan, J. Mater. Sci. 27, 3409 (1992)

    Article  CAS  Google Scholar 

  13. R. Banerjee, R. Chandra, P. Ayyub, Thin Solid Films 405, 64 (2002)

    Article  CAS  Google Scholar 

  14. D.R. McKenzie, Y. Yin, W.D. McFall, N.H. Hoang, J. Phys. Cond. Mater. 8, 5883 (1996)

    Article  CAS  Google Scholar 

  15. J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Thin Solid Films 197, 117 (1991)

    Article  CAS  Google Scholar 

  16. T.C. Chou, J. Appl. Phys. 67, 2670 (1990)

    Article  CAS  Google Scholar 

  17. G.B. Harris, Philos. Mag. 43, 113 (1952)

    Google Scholar 

  18. W. Ensinger, Nucl. Instr. Methods, Phys. Res. B, 127/128, 796 (1997)

    Google Scholar 

  19. B.E. Warren, X-ray Diffraction (Addison Wesley Publishing Co., London, 1969)

    Google Scholar 

  20. Y.M. Sung, H.J. Kim, Surf. Coat. Technol. 171, 75 (2003)

    Article  CAS  Google Scholar 

  21. E. Galvanetto, F.P. Galliano, F. Borgioli, U. Bardi, A. Lavacchi, Thin Solid Films 384, 223 (2001)

    Article  CAS  Google Scholar 

  22. J. Zhao, E.G. Garza, K. Lam, C.M. Jones, Appl. Surf. Sci. 158, 246 (2000)

    Article  CAS  Google Scholar 

  23. M. Guemmaz, G. Moraitis, A. Mosser, M. A. Khan, J.C. Parlebas, J. Phys. Condens. Matter. 9, 8453 (1997)

    Google Scholar 

  24. I. Bertoti, Surf. Coat. Technol. 151/152, 194 (2002)

  25. H.Z. Wu, T.C. Chou, A. Mishra, S.C. Gujrathi, Thin Solid Films 191, 55 (1990)

    Article  CAS  Google Scholar 

  26. J.E. Sendgren, Thin Solid Films 128, 21 (1985)

    Article  Google Scholar 

  27. M.A. Lewis, D.A. Glocker, J. Jorne, J. Vac. Sci. Technol., A 7, 1019 (1989)

    Article  CAS  Google Scholar 

  28. H.H. Huang, M.H. Hon, Thin Solid Films 416, 54–61 (2002)

    Article  CAS  Google Scholar 

  29. S. Inoue, K. Tominaga, R.P. Howson, K. Kusaka, J. Vac. Sci. Technol., A 13, 2808 (1995)

    Article  CAS  Google Scholar 

  30. R. Kroger, M. Eizenberg, C. Marcadal, L. Chen, J. Appl. Phys. 91, 5149 (2002)

    Article  CAS  Google Scholar 

  31. W. Sinke, G.P.A. Frijlink, F.W. Saris, Appl. Phys. Lett. 47, 471 (1985)

    Article  CAS  Google Scholar 

  32. J.E. Sendgren, B.O. Johansson, A. Rockett, S.A. Barnett, J.E. Greene, Physics and Chemistry of Protective Coatings (American Institute of Physics, New York, 1986), p. 95

    Google Scholar 

  33. N. Saoula, S. Djerourou, K. Yahiaoui, K. Henda, R. Kesri, R.M. Erasmusand, J.D. Comins, Surf. Interface Anal. 42, 1176 (2010)

    Article  CAS  Google Scholar 

  34. K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, M. Ohnishi, J. Phys. D Appl. Phys. 37, 1095 (2004)

    Article  CAS  Google Scholar 

  35. L.J. Meng, A. Azevedo, M.P. dos Santos, Vacuum 46, 233 (1995)

    Article  CAS  Google Scholar 

  36. R.M. Charatan, M.E. Gross, D.J. Eaglesham, J. Appl. Phys. 76, 4377–4382 (1994)

    Article  CAS  Google Scholar 

  37. K.C. Park, K.B. Kim, J. Electrochem. Soc. 142, 3109 (1995)

    Article  CAS  Google Scholar 

  38. B. Subramanian, R. Ananthakumar, M. Jayachandran, Surf. Coat. Technol. 205, 3485 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021715). This work was also supported by research funds of Changwon National University in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arshi, N., Lu, J., Joo, Y.K. et al. Influence of nitrogen gas flow rate on the structural, morphological and electrical properties of sputtered TiN films. J Mater Sci: Mater Electron 24, 1194–1202 (2013). https://doi.org/10.1007/s10854-012-0905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0905-4

Keywords

Navigation