Skip to main content
Log in

Effect of annealing temperature on magnetoresistivity, activation energy, irreversibility and upper critical field of the Cu-diffused MgB2 bulk superconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study manifests the change of the pinning mechanism, superconducting and physical properties of Cu-diffused MgB2 superconductors prepared at different annealing temperature from 650 to 850 °C by means of the magnetoresistivity measurements conducted at several applied magnetic fields in a range of 0–7 T as a function of temperature from 15 to 50 K. The onset (T onsetc ) and offset (T offsetc ) critical temperatures, activation energies (U0), irreversibility fields (μ0Hirr), upper critical fields (μ0Hc2), residual resistivity ratios (RR), cross-sectional area fractions (AF), penetration depths (λ), coherence lengths (ξ) and electronic mean free path (\( \ell \)) of the samples are evaluated from the magnetoresistivity curves. Thermally activated flux creep (TAFC) model is used for the determination of the U0 values; likewise, the μ0Hirr and μ0Hc2 values are obtained by resistivity criteria of 10 and 90 % normal-state resistivity, respectively. At absolute zero temperature (T = 0 K), the extrapolation of the μ0Hirr(T) and μ0Hc2(T) curves is used to find the μ0Hirr(0) and μ0Hc2(0) values of the samples. Moreover, the ξ values are deduced from the μ0Hc2(0) values when the λ values are calculated from the Ginzburg–Landau parameter (\( \kappa \)). It is found that the superconducting and physical properties of the samples improve with the increment of the diffusion-annealing temperature; however, the presence of the magnetic field leading to the decrease of the flux pinning in the samples causes the reduction of these properties. Namely, the T onsetc and T offsetc values are found to increase from 38.4 to 39.3 K and 36.9 and 38.3 K with the enhancement in the diffusion-annealing temperature at zero filed. Similarly, the U0 values increase significantly with the increase of the annealing temperature. In fact, the U0 of 9,162 K belonging to the sample annealed at 850 °C is determined to be the maximum activation energy value. On the other hand, the minimum T onsetc of 30.9 K, T offsetc of 27.6 K and U0 of 1,365 K at 7 T applied magnetic field are obtained for the pure sample, indicating that the sample annealed at 850 °C obtains much stronger flux pinning, better crystallinity and connectivity between grains compared to the other samples prepared. Based on these results, the superconducting and physical properties of the MgB2 superconductors produced in this work are observed to enhance with the increase of the diffusion-annealing temperature as a result of the improvement of pinning abilities, crystallinity and connectivity between grains. The magnetic field and temperature dependence of the activation energy are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Ghazanfari, A. Kilic, A. Gencer, H. Ozkana, Solid State Commun. 144, 210 (2007)

    Article  CAS  Google Scholar 

  2. T. Makise, S. Uchida, S. Horii, J. Shimoyama, K. Kishio, Phys. C 772, 460 (2007)

    Google Scholar 

  3. G. Yildirim, Y. Zalaoglu, M. Akdogan, S.P. Altintas, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 24, 2153 (2011)

    Article  CAS  Google Scholar 

  4. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature 410, 63

  5. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Article  CAS  Google Scholar 

  6. K. Vinod, R.G.A. Kumar, U. Syamaprasad, Supercond. Sci. Technol. 20, R1 (2007)

    Article  CAS  Google Scholar 

  7. M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, A. Wisniewski, H.W. Weber, Phys. C 408, 111 (2004)

    Article  Google Scholar 

  8. A.A. Golubov, A. Brinkman, O.V. Dolgov, J. Kortus, O. Jepsen, Phys. Rev. B 66, 054524 (2002)

    Article  Google Scholar 

  9. J.D. Fletcher, A. Carrington, O.J. Taylor, S.M. Kazakov, J. Karpinski, Phys. Rev. Lett. 95, 097005 (2005)

    Article  CAS  Google Scholar 

  10. M. Angst, D. Di Castro, D.G. Eshchenko, R. Khasanov, S. Kohout, I.M. Savic, A. Shengelaya, S.L. Bud’ko, P.C. Canfield, J. Jun, J. Karpinski, S.M. Kazakov, R.A. Ribeiro, H. Keller, Phys. Rev. B 70, 224513 (2004)

    Article  Google Scholar 

  11. Y. Bugoslavsky, G.K. Perkins, X. Qi, L.F. Cohen, A.D. Caplin, Nature 410, 563 (2001)

    Article  CAS  Google Scholar 

  12. D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, P.C. Canfield, Phys. Rev. Lett. 86, 2420 (2001)

    Article  CAS  Google Scholar 

  13. M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu. J. Mater. Sci. Mater. Electron. (2012) doi:10.1007/s10854-012-0689-6.

  14. G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, Y. Zalaoglu. J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1384-1.

  15. G. Yildirim, M. Akdogan, S.P. Altintas, M. Erdem, C. Terzioglu, A. Varilci, Phys. B 406, 1853 (2011)

    Article  CAS  Google Scholar 

  16. K.Q. Ruan, H.L. Li, Y. Yu, C.Y. Wang, L.Z. Cao, C.F. Liu, S.J. Du, G. Yan, Y. Feng, X. Wu, J.R. Wang, X.H. Liu, P.X. Zhang, X.Z. Wu, L. Zhou, Phys. C 386, 578–580 (2003)

    Article  CAS  Google Scholar 

  17. C.S. Pande, R.A. Masumura, Phys. C 314, 147 (1999)

    Article  CAS  Google Scholar 

  18. T. Ishida, H. Mazaki, Phys. Rev. B 20, 131 (1979)

    Article  CAS  Google Scholar 

  19. K. Tachikawa, Y. Yamada, O. Suzuki, M. Enomoto, M. Aodai, Phys. C 382, 108 (2002)

    Article  CAS  Google Scholar 

  20. R.C. Ma, W.H. Song, X.B. Zhu, L. Zhang, S.M. Liu, J. Fang, J.J. Du, Y.P. Suna, C.S. Li, Z.M. Yu, Y. Feng, P.X. Zhang, Phys. C 405, 34 (2004)

    Article  CAS  Google Scholar 

  21. T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)

    Article  CAS  Google Scholar 

  22. R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)

    Article  CAS  Google Scholar 

  23. A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, H. Fukuyama, S. Maekawa. Strong correlation and superconductivity. Springer Series in Sol. State Sci., vol 89. (Springer, Berlin, 1989).

  24. X. Wan, Y. Sun, W. Song, L. Jiang, K. Wang, J. Du, Supercond. Sci. Technol. 11, 1079 (1998)

    Article  CAS  Google Scholar 

  25. M.H. Pu, W.H. Song, B. Zhao, X.C. Wu, Y.P. Sun, J.J. Du, J. Fang, Phys. C 361, 181 (2001)

    Article  CAS  Google Scholar 

  26. S. Vinu, P.M. Sarun, R. Shabna, U. Syamaprasad, J. Alloys. Compd. 487, 1 (2009)

    Article  CAS  Google Scholar 

  27. M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989)

    Article  CAS  Google Scholar 

  28. N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104 (1996)

    Article  CAS  Google Scholar 

  29. G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Phys. C 160, 333 (1989)

    Article  CAS  Google Scholar 

  30. X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindeish, M. Tomsic, J. Appl. Phys. 105, 103913 (2009)

    Article  Google Scholar 

  31. J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)

    Article  CAS  Google Scholar 

  32. J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol. 19, L33 (2006)

    Article  CAS  Google Scholar 

  33. R.H.T. Wilke, S.L. Bud‘ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. C 424, 1 (2005)

    Article  CAS  Google Scholar 

  34. M.S. Ososfky, R.J. Soulen, S.A. Wolf, J.M. Broto, J.M. Rakoto, J.C. Ousset, G. Coffe, S. Askenazy, P. Pari, I. Bozovic, J.N. Eckstein, G.F. Virshup, Phys. Rev. Lett. 71, 2315 (1993)

    Article  Google Scholar 

  35. H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486 (2004)

    Article  CAS  Google Scholar 

  36. J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026 (2007)

    Article  CAS  Google Scholar 

  37. C.S. Yadav, P.L. Paulose, New J. Phys. 11, 103046 (2009)

    Article  Google Scholar 

  38. D. Yazici, M. Erdem, B. Ozcelik. J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1331-1.

  39. G. Yildirim, S. Bal, A. Varilci. J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1496-2.

  40. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I. G-Eldeen. J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1334-y.

  41. E. Yucel, C. Terzioglu, A. Varilci, A. Gencer, I. Belenli, Chin. J. Phys. 49, 809 (2011)

    CAS  Google Scholar 

  42. E. Yucel, C. Terzioglu, A. Varilci, I. Belenli. J. Mater. Sci. Mater. Electron. 22, 1143 (2011)

  43. D. Bumin, E. Yanmaz, M. Basoglu, A. Gencer, J. Supercond. Nov. Magn. 24, 211 (2011)

    Article  CAS  Google Scholar 

  44. Y. Ding, H.C. Wang, F.X. Zhao, Z.X. Shi, Z.L. Zhang, L. Ma, H.L. Suo, J. Supercond. Nov. Magn. 23, 633 (2010)

    Article  CAS  Google Scholar 

  45. C.B. Eom, M.K. Lee, J.H. Choi, L.J. Belenky, X. Song, L.D. Cooley, M.T. Naus, S. Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock, E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S. Slusky, K. Inumaru, M.K. Haas, R.J. Cava, Nature (London) 411, 558 (2001)

    Article  CAS  Google Scholar 

  46. Y. Iwasa, D.C. Larbalestier, M. Okada, R. Penco, M.D. Sumption, X.X. Xi, IEEE Trans. Appl. Supercond. 16, 1457 (2006)

    Article  Google Scholar 

  47. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii, K. Kishio, Appl. Phys. Lett. 86, 212502 (2005)

    Article  Google Scholar 

  48. M.D. Sumption, M. Bhatia, S.X. Dou, M. Rindfliesch, M. Tomsic, L. Arda, M. Ozdemir, Y. Hascicek, E.W. Collings, Supercond. Sci. Technol. 17, 1180 (2004)

    Article  CAS  Google Scholar 

  49. D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, M. Haas, Nature 410, 186 (2001)

    Article  CAS  Google Scholar 

  50. J. Chen, V. Ferrando, P. Orgiani, A.V. Pogrebnyakov, R.H.T. Wilke, J.B. Betts, C.H. Mielke, J.M. Redwing, X.X. Xi, Q. Li, Phys. Rev. B 74, 174511 (2006)

    Article  Google Scholar 

  51. V. Braccini, L.D. Cooley, S. Patnaik, D.C. Larbalestier, P. Manfrinetti, A. Palenzona, A.S. Siri, Appl. Phys. Lett. 81, 4577 (2002)

    Article  CAS  Google Scholar 

  52. J.E.A. Gümbel, G. Fuchs, K. Nenkov, K.-H. Müller, L. Schultz, Appl. Phys. Lett. 80, 2725 (2002)

    Article  Google Scholar 

  53. H. Kumakura, H. Kitaguchi, A. Matsumoto, H. Yamada, Supercond. Sci. Technol. 18, 1042 (2005)

    Article  CAS  Google Scholar 

  54. N. Ojha, G.D. Varma, H.K. Singh, V.P.S. Awana. J. Appl. Phys. 105, 07E315 (2009)

  55. D.C. Larbalestier, A. Gurevich, D.M. Feldmann, A.A. Polyanskii, Nature 414, 368 (2001)

    Article  CAS  Google Scholar 

  56. S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68 (2010)

    Article  CAS  Google Scholar 

  57. B.B. Jin, T. Dahm, C. Iniotakis, A. IGubin, E.-M. Choi, H.J. Kim, S.-I.K. Lee, W.N. Kang, S.F. Wang, Y.L. Zhou, A.V. Pogrebnyakov, J.M. Redwing, X.X. Xi, N. Klein. Supercond. Sci. Technol. 18, L1 (2005)

  58. I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz’menko, D. van der Marel, Phys. Rev. Lett. 89, 107002 (2002)

    Article  CAS  Google Scholar 

  59. M. Dressel, G. Grüner. Electrodynamics of solids, optical properties of electrons in matter, 1st edn. (Cambridge University Press, Cambridge, 2002).

  60. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575 (2010)

    Article  CAS  Google Scholar 

  61. A.I. Abou-Aly, M.T. Korayem, N.G. Gomaa, R. Awad, M.A. Al- Hajji, Supercond. Sci. Technol. 12, 147 (1999)

    Article  CAS  Google Scholar 

  62. H.H. Sung, H.C. Yang, H.C. Chen, H.E. Horng, B.C. Yao, Chin. J. Phys. 30, 247 (1992)

    CAS  Google Scholar 

  63. E. Govea-Alcaide, M. Hernandez-Wolpez, A.J. Batista-Leyva, R.F. Jardim, P. Mune, Phys. C 423, 51 (2005)

    Article  CAS  Google Scholar 

  64. A.J. Batista-Laeyva, R. Cobas, M.T.D. Orlando, E. Altshuler. Supercond. Sci. Technol. 16, 857 (2003).

  65. A.I. Abou-Aly, M.F. Mostafa, I.H. Ibrahim, R. Awad, M.A. Al-Hajji, Supercond. Sci. Technol. 15, 938 (2002)

    Article  CAS  Google Scholar 

  66. M.H. Pu, Y. Feng, P.X. Zhang, J.X. Wang, J.J. Du, L. Zhou, Phys. C 467, 412 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Terzioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogruer, M., Yildirim, G. & Terzioglu, C. Effect of annealing temperature on magnetoresistivity, activation energy, irreversibility and upper critical field of the Cu-diffused MgB2 bulk superconductors. J Mater Sci: Mater Electron 24, 392–401 (2013). https://doi.org/10.1007/s10854-012-0763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0763-0

Keywords

Navigation