Skip to main content
Log in

Room-temperature indentation creep of lead-free Sn–Bi solder alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Creep behavior of the lead-free Sn–Bi alloys with bismuth contents in the range of 1–5 wt.% was studied by long time Vickers indentation testing at room temperature. The materials were examined in the homogenized cast and wrought conditions. The stress exponents, determined through different indentation methods, were in good agreement. The exponents of 13.4–15.3 and 9.2–10.0, found respectively for the cast and wrought conditions, are close to those determined by room-temperature conventional creep testing of the same material reported in the literature. Due to the solid solution hardening effects of Bi in Sn, creep rate decreased and creep resistance increased with increasing Bi content of the materials. Cast alloys, with a rather coarser grain structure and some Bi particles at the grain boundaries, showed typically higher resistance to indentation creep compared to the wrought materials. These two factors have apparently resulted in a less tendency of the material for grain boundary accommodated deformation, which is considered as a process to decrease the creep resistance of soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.R. Geranmayeh, R. Mahmudi, J. Elec. Mater. 34, 1002 (2005)

    Article  CAS  Google Scholar 

  2. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  3. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. 36A, 99 (2005)

    Article  CAS  Google Scholar 

  4. F. Ochoa, X. Deng, N. Chawala, J. Elec. Mater. 33, 1596 (2004)

    Article  CAS  Google Scholar 

  5. N. Wade, K. Wu, J. Kunii, S. Yamada, K. Miyahara, J. Elec. Mater. 30, 1228 (2001)

    Article  CAS  Google Scholar 

  6. F. Wang, X. Ma, Y. Qian, Scripta Mater. 53, 699 (2005)

    Article  CAS  Google Scholar 

  7. R.A. Islam, B.Y. Wu, M.O. Alam, Y.C. Chan, W. Jillek, J. Alloys Compd. 392, 149 (2005)

    Article  CAS  Google Scholar 

  8. D. Mitlin, C.H. Raeder, R.W. Messler, Metall. Mater. Trans. 30A, 115 (1999)

    Article  CAS  Google Scholar 

  9. T. Reinikainen, J. Kivilahti, Metall. Mater. Trans. 30A, 123 (1999)

    Article  CAS  Google Scholar 

  10. L.L. Duan, D.Q. Yu, S.Q. Han, H.T. Ma, L. Wang, J. Alloys Compd. 381, 202 (2004)

    Article  CAS  Google Scholar 

  11. C.W. Hwang, K. Suganuma, Mater. Sci. Eng. A373, 187 (2004)

    CAS  Google Scholar 

  12. H.L. Lai, J.G. Duh, J. Elec. Mater. 32, 215 (2003)

    Article  CAS  Google Scholar 

  13. H.W. Miao, J.G. Duh, Mater. Chem. Phys. 71, 255 (2001)

    Article  CAS  Google Scholar 

  14. F. Yang, J.C.M. Li, Mater. Sci. Eng. A201, 40 (1995)

    CAS  Google Scholar 

  15. F.J. Wang, X. Ma, Y.Y. Qian, J. Mater. Sci. 40, 1923 (2005)

    Article  CAS  Google Scholar 

  16. M. Fujiwara, M. Otsuka, Mater. Sci. Eng. A319–321, 929 (2001)

    Google Scholar 

  17. T. El-Ashram, R.M. Shalaby, J. Elec. Mater. 34, 212 (2005)

    Article  CAS  Google Scholar 

  18. R. Mahmudi, A. Rezaee-Bazzaz, Mater. Letts. 59, 1705 (2005)

    Article  CAS  Google Scholar 

  19. T. Ogawa, R. Kaga, T. Ohsawa, J. Elec. Mater. 34, 311 (2005)

    Article  CAS  Google Scholar 

  20. H. Rhee, J.P. Lucas, K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 13, 477 (2002)

    Article  CAS  Google Scholar 

  21. R. Mahmudi, R. Roumina, B. Raeisinia, Mater. Sci. Eng. A382, 15 (2004)

    CAS  Google Scholar 

  22. R. Roumina, B. Raeisinia, R. Mahmudi, Scripta Mater. 51, 497 (2004)

    Article  CAS  Google Scholar 

  23. A.R. Geranmayeh, R. Mahmudi, J. Mater. Sci. 40, 3361 (2005)

    Article  CAS  Google Scholar 

  24. A. Juhasz, P. Tasnadi, I. Kovacs, J. Mater. Sci. Lett. 5, 35 (1986)

    Article  CAS  Google Scholar 

  25. P.M. Sargent, M.F. Ashby, Mater. Sci. Tech. 8, 594 (1992)

    CAS  Google Scholar 

  26. G. Cseh, J. Bar, H.J. Gudladt, J. Lendvai, A. Juhasz, Mater. Sci. Eng. A272, 145 (1999)

    CAS  Google Scholar 

  27. B. Walser, O.D. Sherby, Scripta Metall. 16, 213 (1982)

    Article  CAS  Google Scholar 

  28. G. Saad, F. Abd-Elsalam, M.T. Mostafa, Surf. Technol. 23, 73 (1984)

    Article  Google Scholar 

  29. R. Mahmudi, A.R. Geranmayeh, A. Rezaee-Bazzaz, J. Alloys Compd. 427, 124 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Iran National Science Foundation (INSF) for providing financial support of this work under Grant No. 84094/26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmudi, R., Geranmayeh, A.R., Mahmoodi, S.R. et al. Room-temperature indentation creep of lead-free Sn–Bi solder alloys. J Mater Sci: Mater Electron 18, 1071–1078 (2007). https://doi.org/10.1007/s10854-007-9124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-007-9124-9

Keywords

Navigation