Skip to main content
Log in

A review on carbon dots as innovative materials for advancing biomedical applications: synthesis, opportunities, and challenges

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) have gained significant attention as innovative materials for advancing biomedical applications due to their diverse physicochemical properties and advantageous attributes. This review article comprehensively summarizes the nanostructures, surface chemistry, optical properties, and synthesis methods of CDs, including electrochemical oxidation, arc discharge, laser ablation, chemical oxidation, ultrasonic treatment, hydrothermal/solvothermal processes, microwave-assisted techniques, pyrolysis, and hybrid synthesis routes. With their low toxicity and good biocompatibility, CDs are highly desirable for biomedical applications. The review highlights recent significant advances in properties such as ultraviolet–visible absorption and band gap, quantum yield, photoluminescence, phosphorescence, photostability, photobleaching, and dispersibility. Furthermore, the article systematically explores the promising applications of CDs in biomedicine, including biosensing, bioimaging, cell labeling and tracking, drug delivery, gene delivery, antibacterial properties, antiviral activities, viral inhibition, and cancer therapy. The comprehensive overview provided in this review article offers insights into the synthesis, properties, and applications of CDs, emphasizing their potential as innovative materials for advancing biomedical research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

© 2019, with permission from Royal Society of Chemistry

Figure 2

© 2022, MDPI (open access)

Figure 3

© 2021, MDPI (open access)

Figure 4

© 2019, American Chemical Society (open access)

Figure 5

© 2021, Frontiers (open access)

Figure 6

© 2021, Hindawi (open access)

Figure 7

© 2020, with permission from Elsevier

Figure 8

© 2020, Frontiers (open access)

Figure 9

© 2019, with permission from Elsevier

Figure 10

© 2022, Springer (open access)

Figure 11

© 2021, Frontiers (open access)

Figure 12

© 2016, Springer (open access)

Figure 13

© 2020, With permission from American Chemical Society Publications

Figure 14

© 2019, With permission from Elsevier

Figure 15

© 2015, Springer (open access)

Figure 16

© 2015, PubMed Central (open access)

Figure 17

© 2019, Elsevier (open access)

Figure 18

© 2020, PubMed Central (open access)

Figure 19

© 2021, Springer (open access)

Figure 20

© 2022, Wiley (open access)

Similar content being viewed by others

Data availability

This research is a review paper and all data gathered during this study is included in this published article through other research which can be accessed using DOIs in References.

References

  1. Yi H, Huang D, Qin L, Zeng G, Lai C, Cheng M, Ye S, Song B, Ren X, Guo X (2018) Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production. Appl Catal B Environ 239:408–424. https://doi.org/10.1016/j.apcatb.2018.07.068

    Article  CAS  Google Scholar 

  2. Kang Z, Lee S-T (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11:19214–19224. https://doi.org/10.1039/C9NR05647E

    Article  CAS  Google Scholar 

  3. Wang B, Lu S (2022) The light of carbon dots: from mechanism to applications. Matter 5:110–149. https://doi.org/10.1016/j.matt.2021.10.016

    Article  CAS  Google Scholar 

  4. Liu J, Li R, Yang B (2020) carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Central Sci. https://doi.org/10.1021/acscentsci.0c01306

    Article  Google Scholar 

  5. Kailasa SK, Bhamore JR, Koduru JR, Park TJ (2019) Carbon dots as carriers for the development of controlled drug and gene delivery systems. Biomed Appl Nanoparticles. https://doi.org/10.1016/B978-0-12-816506-5.00006-1

    Article  Google Scholar 

  6. Han M, Zhu S, Lu S, Song Y, Feng T, Tao S, Liu J, Yang B (2018) Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today 19:201–218. https://doi.org/10.1016/j.nantod.2018.02.008

    Article  CAS  Google Scholar 

  7. Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X (2018) Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 185:1–34. https://doi.org/10.1007/s00604-018-2953-9

    Article  CAS  Google Scholar 

  8. Azam N, Ali MN, Khan TJ (2021) Carbon quantum dots for biomedical applications: review and analysis. Front Mater 8:1–21. https://doi.org/10.3389/fmats.2021.700403

    Article  Google Scholar 

  9. Quantum Dots Market Size, Share & Industry Growth Analysys Report, https://www.marketsandmarkets.com/Market-Reports/quantum-dots-qd-market-694.html

  10. Jorns M, Pappas D (2021) A review of fluorescent carbon dots, their synthesis, physical and chemical characteristics, and applications. Nanomaterials 11:1448. https://doi.org/10.3390/nano11061448

    Article  CAS  Google Scholar 

  11. Liu M (2020) Optical properties of carbon dots: a review. Nanoarchitectonics. https://doi.org/10.37256/nat.112020124.1-12

    Article  Google Scholar 

  12. Yao X, Lewis RE, Haynes CL (2022) Synthesis processes, photoluminescence mechanism, and the toxicity of amorphous or polymeric carbon dots. Acc Chem Res 55:3312–3321. https://doi.org/10.37256/nat.112020124.1-12

    Article  CAS  Google Scholar 

  13. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots properties syntheses and biological applications. Small. https://doi.org/10.1002/smll.201402648

    Article  Google Scholar 

  14. Roshni V, Gujar V, Pathan H, Islam S, Tawre M, Pardesi K, Santra MK, Ottoor D (2019) Bioimaging applications of carbon dots (C. dots) and its cystamine functionalization for the sensitive detection of Cr (VI) in aqueous. J Fluoresc. https://doi.org/10.1007/s10895-019-02448-3

    Article  Google Scholar 

  15. Gao N, Huang L, Li T, Song J, Hu H, Liu Y (2019) Application of carbon dots in dye-sensitized solar cells: a review. J Appl Polym Sci 48443:1–11. https://doi.org/10.1002/app.48443

    Article  CAS  Google Scholar 

  16. Byun Y, Jung C-W, Kim J-H, Kwon W (2022) Thermal control of oxygen-induced emission states in carbon dots for indoor lighting applications. Dye Pigment 208:110895. https://doi.org/10.1016/j.dyepig.2022.110895

    Article  CAS  Google Scholar 

  17. Bhattacharya D, Mishra MK, De G (2017) Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films. J Phys Chem C 121(50):28106–28116

    Article  CAS  Google Scholar 

  18. Hu C, Li M, Qiu, J, Sun Y (2019) Chem Soc Rev conversion and storage †. https://doi.org/10.1039/c8cs00750k

  19. Langer M, Paloncýová M, Medve M, Pykal M, Nachtigallová D, Shi B, Aquino AJA, Lischka H, Otyepka M (2021) Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Appl Mater Today. https://doi.org/10.1016/j.apmt.2020.100924

    Article  Google Scholar 

  20. Rao L, Zhang Q, Sun B, Wen M, Zhang J, Zhong G, Fu T, Niu X (2022) Multicolor luminescent carbon dots: tunable photoluminescence, excellent stability, and their application in light-emitting diodes. Nanomaterials 12:3132. https://doi.org/10.3390/nano12183132

    Article  CAS  Google Scholar 

  21. Wu ZL, Liu X, Huan Y (2017) Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J Mater Chem B. https://doi.org/10.1039/c7tb00363c

    Article  Google Scholar 

  22. Jiang K, Wang Y, Li Z, Lin H (2020) Afterglow of carbon dots: mechanism, strategy and applications. Mater Chem Front 4(2):386–399. https://doi.org/10.1039/c9qm00578a

    Article  CAS  Google Scholar 

  23. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  24. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta. https://doi.org/10.1007/s00604-015-1705-3

    Article  Google Scholar 

  25. Yan F, Zhang H, Yu N, Sun Z, Chen L (2021) Conjugate area-controlled synthesis of multiple-color carbon dots and application in sensors and optoelectronic devices. Sensors Actuators B Chem. 329:129263. https://doi.org/10.1016/j.snb.2020.129263

    Article  CAS  Google Scholar 

  26. Li D, Ushakova EV, Rogach AL, Qu S (2021) Optical properties of carbon dots in the deep-red to near-infrared region are attractive for biomedical applications. Small 17:2102325. https://doi.org/10.1002/smll.202102325

    Article  CAS  Google Scholar 

  27. Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z (2019) The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim Acta. https://doi.org/10.1007/s00604-019-3688-y

    Article  Google Scholar 

  28. Mansuriya BD, Altintas Z (2021) Carbon dots: classification, properties, synthesis, characterization, and applications in health care-an updated review (2018–2021). Nanomater (Basel, Switzerland). https://doi.org/10.3390/nano11102525

    Article  Google Scholar 

  29. Wibrianto A, Khairunisa SQ, Sakti SCW, Ni’Mah YL, Purwanto B, Fahmi MZ (2021) Comparison of the effects of synthesis methods of B, N, S, and P-doped carbon dots with high photoluminescence properties on HeLa tumor cells. RSC Adv 11:1098–1108. https://doi.org/10.1039/D0RA09403J

    Article  CAS  Google Scholar 

  30. Javed N, Carroll DMO (2021) Carbon dots and stability of their optical properties. Part Part Syst Charact 2000271:1–12. https://doi.org/10.1002/ppsc.202000271

    Article  CAS  Google Scholar 

  31. Cacioppo, M.: Synthesis of nitrogen doped carbon nanodots and their applications as functional materials. (2020). https://hdl.handle.net/11368/2963757

  32. Li R, Wei F, Wu X, Zhou P, Chen Q, Cen Y, Xu G, Cheng X, Zhang A, Hu Q (2021) PEI modified orange emissive carbon dots with excitation-independent fluorescence emission for cellular imaging and siRNA delivery. Carbon N Y 177:403–411. https://doi.org/10.1016/j.carbon.2021.02.069

    Article  CAS  Google Scholar 

  33. Peng C, Chen X, Chen M, Lu S, Wang Y, Wu S, Liu X, Huang W (2021) Afterglow carbon dots from fundamentals to applications. Research. https://doi.org/10.34133/2021/6098925

    Article  Google Scholar 

  34. Yang Z, Zhang Z, Sun Y, Lei Z, Wang D, Ma H, Tang BZ (2021) Incorporating spin-orbit coupling promoted functional group into an enhanced electron DA system: a useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Biomaterials 275:120934. https://doi.org/10.1016/j.biomaterials.2021.120934

    Article  CAS  Google Scholar 

  35. Li Z, Wang L, Li Y, Feng Y, Feng W (2019) Frontiers in carbon dots: design, properties and applications. Mater Chem Front 3:2571–2601. https://doi.org/10.1039/C9QM00415G

    Article  CAS  Google Scholar 

  36. Yuan T, Meng T, Shi Y, Song X, Xie W, Li Y, Li X, Zhang Y, Fan L (2022) Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. J Mater Chem C 10:2333–2348. https://doi.org/10.1039/D1TC04271H

    Article  CAS  Google Scholar 

  37. Kang H, Zheng J, Liu X, Yang Y (2021) Phosphorescent carbon dots: microstructure design, synthesis and applications. New Carbon Mater 36:649–664. https://doi.org/10.1016/S1872-5805(21)60083-5

    Article  CAS  Google Scholar 

  38. Ghosal K, Ghosh A (2019) Carbon dots: the next generation platform for biomedical applications. Mater Sci Eng C 96:887–903. https://doi.org/10.1016/j.msec.2018.11.060

    Article  CAS  Google Scholar 

  39. Su W, Wu H, Fan L (2020) Carbon dots: a booming material for biomedical applications. Mater Chem Front. https://doi.org/10.1039/c9qm00658c

    Article  Google Scholar 

  40. Bin B, Li M, Mei C, Zhi C (2019) Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 270:165–190. https://doi.org/10.1016/j.cis.2019.06.008

    Article  CAS  Google Scholar 

  41. Zhi B, Gallagher MJ, Frank BP, Lyons TY, Qiu TA, Da J, Mensch AC, Hamers RJ, Rosenzweig Z, Fairbrother DH (2018) Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact. Carbon N Y 129:438–449. https://doi.org/10.1016/j.carbon.2017.12.004

    Article  CAS  Google Scholar 

  42. Zhang B, Duan Q, Zhao H, Zhang Y, Li X, Xi Y, Wu Z, Guo L, Li P, Sang S (2021) Application of carbon dots in nucleolus imaging to distinguish cancerous cells from normal cells. Sensors Actuators B Chem. 329:129156. https://doi.org/10.1016/j.snb.2020.129156

    Article  CAS  Google Scholar 

  43. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. https://doi.org/10.1016/j.progpolymsci.2015.07.003

    Article  CAS  Google Scholar 

  44. Wagner AM, Knipe JM, Orive G, Peppas NA (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63. https://doi.org/10.1016/j.actbio.2019.05.022

    Article  CAS  Google Scholar 

  45. Jiang W, Zhao Y, Zhu X, Liu H, Sun B (2021) Carbon dot-based biosensors. Adv NanoBiomed Res 1:2000042. https://doi.org/10.1002/anbr.202000042

    Article  CAS  Google Scholar 

  46. Li H, Ye S, Guo J, Wang H, Yan W, Song J, Qu J (2019) Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Res 12:3075–3084. https://doi.org/10.1007/s12274-019-2554-x

    Article  CAS  Google Scholar 

  47. Wang W, Damm C, Walter J, Nacken TJ, Peukert W (2015) Photobleaching and stabilization of carbon nanodots produced by solvothermal synthesis †. Phys Chem Chem Phys 18:466–475. https://doi.org/10.1039/C5CP04942C

    Article  CAS  Google Scholar 

  48. Feng T, Ai X, An G, Yang P, Zhao Y (2016) Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano. https://doi.org/10.1021/acsnano.6b00043

    Article  Google Scholar 

  49. Zhang Q, Wang R, Feng B, Zhong X, Ostrikov K (2021) Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat Commun 12:6856. https://doi.org/10.1038/s41467-021-27071-4

    Article  CAS  Google Scholar 

  50. Das S, Ngashangva L, Goswami P (2021) Carbon dots: an emerging smart material for analytical applications. Micromachines 12:84. https://doi.org/10.3390/mi12010084

    Article  Google Scholar 

  51. Sutanto H, Alkian I, Romanda N, Lewa IWL, Marhaendrajaya I, Triadyaksa P (2020) High green-emission carbon dots and its optical properties: Microwave power effect High green-emission carbon dots and its optical properties: Microwave power effect. AIP Adv. https://doi.org/10.1063/5.0004595

    Article  Google Scholar 

  52. Ren J, Malfatti L, Innocenzi P (2020) Citric acid derived carbon dots, the challenge of understanding the synthesis-structure relationship. C 7:2. https://doi.org/10.3390/c7010002

    Article  CAS  Google Scholar 

  53. Zhao P, Zhu L (2018) Dispersibility of carbon dots in aqueous and/or organic solvents. Chem Commun 54:5401–5406. https://doi.org/10.1039/C8CC02279H

    Article  CAS  Google Scholar 

  54. Li S, Li L, Tu H, Zhang H, Silvester DS, Banks CE, Zou G, Hou H, Ji X (2021) The development of carbon dots: from the perspective of materials chemistry. Mater Today 51:188–207. https://doi.org/10.1016/j.mattod.2021.07.028

    Article  CAS  Google Scholar 

  55. Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S (2022) Carbon dots in bioimaging, biosensing and therapeutics: a comprehensive review. Small Sci. https://doi.org/10.1002/smsc.202200012

    Article  Google Scholar 

  56. Yao B, Huang H, Liu Y, Kang Z (2019) Carbon dots: a small conundrum. Trends Cogn Sci 1:235–246. https://doi.org/10.1016/j.trechm.2019.02.003

    Article  CAS  Google Scholar 

  57. Hettiarachchi SD, Graham RM, Mintz KJ, Zhou Y, Vanni S, Peng Z, Leblanc RM (2019) Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11:6192–6205. https://doi.org/10.1039/C8NR08970A

    Article  CAS  Google Scholar 

  58. Sato R, Iso Y, Isobe T (2019) Fluorescence solvatochromism of carbon dot dispersions prepared from phenylenediamine and optimization of red emission. Langmuir 35:15257–15266. https://doi.org/10.1021/acs.langmuir.9b02739

    Article  CAS  Google Scholar 

  59. Xia C, Zhu S, Feng T, Yang M, Yang B (2019) Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Adv Sci 6:1901316. https://doi.org/10.1002/advs.201901316

    Article  CAS  Google Scholar 

  60. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater today Chem 8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003

    Article  CAS  Google Scholar 

  61. Döring A, Ushakova E, Rogach AL (2022) Chiral carbon dots: synthesis, optical properties, and emerging applications. Light Sci Appl 11:75. https://doi.org/10.1038/s41377-022-00764-1

    Article  CAS  Google Scholar 

  62. Journal AI, Farshbaf M, Davaran S, Rahimi F, Annabi N, Akbarzadeh A (2018) Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artif Cells Nanomed Biotechnol 46:1331–1348. https://doi.org/10.1080/21691401.2017.1377725

    Article  CAS  Google Scholar 

  63. Sharma A, Das J (2019) Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J Nanobiotechnol. https://doi.org/10.1186/s12951-019-0525-8

    Article  Google Scholar 

  64. Feng X (2019) A simple and green synthesis of carbon quantum dots from coke for white light-emitting devices. RSC Adv. https://doi.org/10.1039/c9ra06946a

    Article  Google Scholar 

  65. Ken K, Stephanie C, Kit H, Yong YK (2018) Biogreen synthesis of carbon dots for biotechnology and nanomedicine applications. Nano-Micro Lett. https://doi.org/10.1007/s40820-018-0223-3

    Article  Google Scholar 

  66. Wang R, Lu K, Tang Z, Xu Y (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A Mater Energy Sustain 5:3717–3734. https://doi.org/10.1039/C6TA08660H

    Article  CAS  Google Scholar 

  67. Vibhute A, Patil T, Gambhir R, Tiwari AP (2022) Applied surface science advances fluorescent carbon quantum dots: synthesis methods, functionalization and biomedical applications. Appl Surf Sci Adv. 11:100311. https://doi.org/10.1016/j.apsadv.2022.100311

    Article  Google Scholar 

  68. Kaczmarek A, Hoffman J, Morgiel J (2021) Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine. Materials 14(4):729. https://doi.org/10.3390/ma14040729

    Article  CAS  Google Scholar 

  69. Online VA, Chahal S, Macairan J, Tufenkji N (2021) Green synthesis of carbon dots and their applications. RSC Adv. https://doi.org/10.1039/d1ra04718c

    Article  Google Scholar 

  70. Li H, Shao F, Zou S, Yang Q, Huang H, Feng J (2015) Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183:821–826. https://doi.org/10.1007/s00604-015-1714-2

    Article  CAS  Google Scholar 

  71. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. https://doi.org/10.1039/c4tc00988f

    Article  Google Scholar 

  72. Ma C, Yin C (2019) Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. J Mater Sci. https://doi.org/10.1007/s10853-019-03585-7

    Article  Google Scholar 

  73. Tang W, Wang B (2018) Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. J Mater Sci. https://doi.org/10.1007/s10853-018-2877-0

    Article  Google Scholar 

  74. Xu J, Cui K, Gong T, Zhang J, Zhai Z, Hou L, Zaman F (2022) Ultrasonic-assisted synthesis of N-Doped, multicolor carbon dots toward fluorescent inks, fluorescence sensors, and logic gate operations. Nanomaterials. https://doi.org/10.3390/nano12030312

    Article  Google Scholar 

  75. Sun X, Lei Y (2017) Trends in analytical chemistry. Trends Anal Chem 89:163–180. https://doi.org/10.1016/j.trac.2017.02.001

    Article  CAS  Google Scholar 

  76. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/C4CS00269E

    Article  CAS  Google Scholar 

  77. Chahal S, Macairan J-R, Yousefi N, Tufenkji N, Naccache R (2021) Green synthesis of carbon dots and their applications. RSC Adv 11:25354–25363. https://doi.org/10.1039/D1RA04718C

    Article  CAS  Google Scholar 

  78. Wang B, Song H, Tang Z, Yang B, Lu S (2021) Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Res. https://doi.org/10.1007/s12274-021-3579-5

    Article  Google Scholar 

  79. Gohari G, Panahirad S, Sadeghi M, Akbari A, Zareei E, Zahedi SM (2021) Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. ‘Sultana’) against salt stress. BMC Plant Biol. https://doi.org/10.1007/s00604-015-1714-2

    Article  Google Scholar 

  80. He M, Zhang J, Wang H, Kong Y, Xiao Y, Xu W (2018) Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2581-7

    Article  Google Scholar 

  81. Tong T, Hu H, Zhou J, Deng S, Zhang X, Tang W (2020) Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small. https://doi.org/10.1002/smll.201906206

    Article  Google Scholar 

  82. Das P, Ganguly S, Agarwal T, Maity P, Ghosh S, Choudhary S, Gangopadhyay S, Kumar T, Dhara S (2019) Heteroatom doped blue luminescent carbon dots as a nano-probe for targeted cell labeling and anticancer drug delivery vehicle. Mater Chem Phys 237:121860. https://doi.org/10.1016/j.matchemphys.2019.121860

    Article  CAS  Google Scholar 

  83. Rezaei A, Hashemi E (2021) OPEN A pseudohomogeneous nanocarrier based on carbon quantum dots decorated with arginine as an efficient gene delivery vehicle. Sci Rep. https://doi.org/10.1038/s41598-021-93153-4

    Article  Google Scholar 

  84. Shahba H, Sabet M (2020) Two-step and green synthesis of highly fluorescent carbon quantum dots and carbon nanofibers from pine fruit. J Fluoresc. https://doi.org/10.1007/s10895-020-02562-7

    Article  Google Scholar 

  85. Dias C, Vasimalai N, Marisa PS, Pinheiro I, Vilas-boas V, Espiña B (2019) Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials 9(2):199. https://doi.org/10.3390/nano9020199

    Article  CAS  Google Scholar 

  86. Fatahi Z, Esfandiari N, Ehtesabi H, Bagheri Z, Ranjbar Z, Latifi H (2019) Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI J 18:454

    Google Scholar 

  87. Lu C, Liu J, Gan L, Yang X (2019) Sensors and Actuators B: Chemical Employing Cryptococcus -directed carbon dots for differentiating and detecting m -benzenediol and p -benzenediol. Sensors Actuators B Chem. 301:127077. https://doi.org/10.1016/j.snb.2019.127077

    Article  CAS  Google Scholar 

  88. Miao H, Wang Y, Yang X (2018) Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale 10:8139–8145. https://doi.org/10.1039/C8NR02405G

    Article  CAS  Google Scholar 

  89. Zhao W, Liu K, Song S, Zhou R, Shan C (2019) Fluorescent nano-biomass dots: ultrasonic—assisted extraction and their application as nanoprobe for Fe3+ detection. Nanoscale Res Lett 14(1):1–9. https://doi.org/10.1186/s11671-019-2950-x

    Article  CAS  Google Scholar 

  90. Quang NK, Thi C, Ha C (2019) Low-cost synthesis of carbon nanodots from millets for bioimaging. MRS Adv 4(3–4):249–254. https://doi.org/10.1557/adv.201

    Article  CAS  Google Scholar 

  91. Yro PAND, Quaichon GMO, Cruz RAT, Emolaga CS, Que MCO, Magdaluyo ER, Basilia BA (2020) Hydrothermal synthesis of carbon quantum dots from biowaste for bio-imaging hydrothermal synthesis of carbon quantum dots from biowaste for bio-imaging. AIP Conf Proc 020007:1–6. https://doi.org/10.1063/1.5094310

    Article  CAS  Google Scholar 

  92. Din TS (2016) A simple and green extraction of carbon dots from sugar beet molasses: biosensor applications. Sugar Ind. 141:560–564. https://doi.org/10.36961/si17741

    Article  Google Scholar 

  93. Prasetya M, Susanto A, Ajeng P, Sulhadi W (2017) Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. J Theor Appl Phys 11:119–126. https://doi.org/10.1007/s40094-017-0250-3

    Article  Google Scholar 

  94. Qureshi WA, Vivekanandan B, Jayaprasath JA, Ali D, Alarifi S, Deshmukh K (2021) Antimicrobial activity and characterization of pomegranate peel-based carbon dots. J Nanomater. https://doi.org/10.1155/2021/9096838

    Article  Google Scholar 

  95. Khairol Anuar NK, Tan HL, Lim YP, Soaib MS, Abu Bakar NF (2021) A review on multifunctional carbon-dots synthesized from biomass waste: design/fabrication, characterization and applications. Front Energy Res. 9:626549. https://doi.org/10.3389/fenrg.2021.626549

    Article  Google Scholar 

  96. Li W, Zhang Z, Kong B, Feng S, Wang J, Wang L, Yang J, Zhang F, Wu P, Zhao D (2013) Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chemie Int Ed 52:8151–8155. https://doi.org/10.1002/anie.201303927

    Article  CAS  Google Scholar 

  97. D’souza SL, Deshmukh B, Bhamore JR, Rawat KA, Lenka N, Kailasa SK (2016) Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system. RSC Adv 6:12169–12179. https://doi.org/10.1039/C5RA24621K

    Article  CAS  Google Scholar 

  98. Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon N Y 60:421–428. https://doi.org/10.1016/j.carbon.2013.04.055

    Article  CAS  Google Scholar 

  99. Angelis CD, Barbosa ES, Corrþa JR, Medeiros GA, Barreto G, Magalhes KG, Aline L (2015) Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chem A Eur J 21:5055–5060. https://doi.org/10.1002/chem.201406330

    Article  CAS  Google Scholar 

  100. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chemie 125:4045–4049. https://doi.org/10.1002/ange.201300519

    Article  Google Scholar 

  101. Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J (2015) Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem 214:29–35. https://doi.org/10.1016/j.snb.2015.03.006

    Article  CAS  Google Scholar 

  102. Wang J, Sahu S, Sonkar SK, Tackett KN II, Sun KW, Liu Y, Maimaiti H, Anilkumar P, Sun Y-P (2013) Versatility with carbon dots–from overcooked BBQ to brightly fluorescent agents and photocatalysts. Rsc Adv 3:15604–15607. https://doi.org/10.1039/c3ra42302f

    Article  CAS  Google Scholar 

  103. Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678. https://doi.org/10.1021/ie402421s

    Article  CAS  Google Scholar 

  104. Hu L, Sun Y, Li S, Wang X, Hu K, Wang L, Liang X, Wu Y (2014) Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon N Y 67:508–513. https://doi.org/10.1016/j.carbon.2013.10.023

    Article  CAS  Google Scholar 

  105. Chae A, Choi Y, Jo S, Paoprasert P, Park SY, In I (2017) Microwave-assisted synthesis of fluorescent carbon quantum dots from an A 2/B 3 monomer set. RSC Adv 7:12663–12669. https://doi.org/10.1039/c6ra28176a

    Article  CAS  Google Scholar 

  106. Khan WU, Wang D, Zhang W, Tang Z, Ma X, Ding X, Du S, Wang Y (2017) High quantum yield green-emitting carbon dots for Fe (capital I, Ukrainiancapital I, Ukrainiancapital I, Ukrainian) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 7:10–1038. https://doi.org/10.1038/s41598-017-15054-9

    Article  CAS  Google Scholar 

  107. Malavika JP, Shobana C, Ragupathi M, Kumar P, Lee YS, Govarthanan M, Selvan RK (2021) A sustainable green synthesis of functionalized biocompatible carbon quantum dots from Aloe barbadensis Miller and its multifunctional applications. Environ Res 200:111414. https://doi.org/10.1016/j.envres.2021.111414

    Article  CAS  Google Scholar 

  108. Rocco D, Moldoveanu VG, Feroci M, Bortolami M, Vetica F (2023) Electrochemical synthesis of carbon quantum dots. Chem ElectroChem. https://doi.org/10.1002/celc.202201104

    Article  Google Scholar 

  109. An Q, Lin Q, Huang X, Zhou R, Guo X, Xu W, Wang S, Xu D, Chang H (2021) Dyes and pigments electrochemical synthesis of carbon dots with a stokes shift of 309 nm for sensing of Fe3+ and ascorbic acid. Dye Pigment 185:108878. https://doi.org/10.1016/j.dyepig.2020.108878

    Article  CAS  Google Scholar 

  110. Wang F, Wang L, Xu J, Huang K (2021) Synthesis and modification of carbon dots for advanced biosensing application. Analyst. https://doi.org/10.1039/d1an00466b

    Article  Google Scholar 

  111. Hernandez-Tabares L, Darias-Gonzalez JG, Chao-Mujica FJ, Ledo-Pereda LM, Antuch M, Carrillo-Barroso E, Chong-Quero JE, Reguera E, Desdin-Garcia LF (2021) Stabilization methods in the submerged arc discharge synthesis of carbon nanostructures. J Nanomater 2021:1–12. https://doi.org/10.1155/2021/6550809

    Article  CAS  Google Scholar 

  112. Biazar N, Poursalehi R, Delavari H (2018) Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid. AIP Conf Proc 020033:1–5. https://doi.org/10.1063/1.5018965

    Article  CAS  Google Scholar 

  113. Khayal A, Dawane V, Amin MA, Tirth V, Yadav VK, Algahtani A, Khan SH, Islam S, Yadav KK, Jeon B-H (2021) Advances in the methods for the synthesis of carbon dots and their emerging applications. Polymers (Basel). 13:3190. https://doi.org/10.3390/polym13183190

    Article  CAS  Google Scholar 

  114. Yogesh GK, Shuaib EP, Priya AK, Rohini P, Anandhan SV, Krishnan UM, Kalyanavalli V, Shukla S, Sastikumar D (2021) Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol. Opt Laser Technol 135:106717. https://doi.org/10.1016/j.optlastec.2020.106717

    Article  CAS  Google Scholar 

  115. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471. https://doi.org/10.1039/c8gc02736f

    Article  CAS  Google Scholar 

  116. Meng W, Bai X, Wang B, Liu Z, Lu S, Yang B (2019) Biomass-derived carbon dots and their applications. Energy Environ Mater 2:172–192. https://doi.org/10.1002/eem2.12038

    Article  CAS  Google Scholar 

  117. Zhang Q, Liang J, Zhao L, Wang Y, Zheng Y, Wu Y, Jiang L (2020) Synthesis of novel fluorescent carbon quantum dots from Rosa roxburghii for rapid and highly selective detection of o-nitrophenol and cellular imaging. Front Chem 8:665. https://doi.org/10.3389/fchem.2020.00665

    Article  CAS  Google Scholar 

  118. Lin L, Luo Y, Tsai P, Wang J, Chen X (2018) Trends in Analytical Chemistry Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications. Trends Anal Chem 103:87–101. https://doi.org/10.1016/j.trac.2018.03.015

    Article  CAS  Google Scholar 

  119. Ma P, Zuo J, Li Z, Xiao D, Wu H, Zhang Y, Dong A (2022) Application progress of green carbon dots in analysis and detection. Part Syst Charact 39:2200104. https://doi.org/10.1002/ppsc.202200104

    Article  CAS  Google Scholar 

  120. Kumar R, Kumar VB, Gedanken A (2020) Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrason Sonochem 64:105009. https://doi.org/10.1002/ppsc.202200104

    Article  CAS  Google Scholar 

  121. Dehvari K, Liu KY, Tseng P-J, Gedda G, Girma WM, Chang J-Y (2019) Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng 95:495–503. https://doi.org/10.1016/j.jtice.2018.08.0377

    Article  CAS  Google Scholar 

  122. Perumal S, Atchudan R, Edison TNJI, Lee YR (2021) Sustainable synthesis of multifunctional carbon dots using biomass and their applications: a mini-review. J Environ Chem Eng 9:105802. https://doi.org/10.1016/j.jece.2021.105802

    Article  CAS  Google Scholar 

  123. Hill S, Galan MC (2017) Fluorescent carbon dots from mono-and polysaccharides: synthesis, properties and applications. Beilstein J Org Chem 13:675–693. https://doi.org/10.3762/bjoc.13.67

    Article  CAS  Google Scholar 

  124. Ndlwana L, Raleie N, Dimpe KM, Ogutu HF, Oseghe EO, Motsa MM, Msagati TAM, Mamba BB (2021) Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: a review. Materials (Basel) 14:5094. https://doi.org/10.20944/preprints202104.0272.v1

    Article  CAS  Google Scholar 

  125. Pang Z, Fu Y, Yu H, Liu S, Yu S, Liu Y, Wu Q, Liu Y, Nie G, Xu H (2022) Efficient ethanol solvothermal synthesis of high-performance nitrogen-doped carbon quantum dots from lignin for metal ion nanosensing and cell imaging. Ind Crops Prod 183:114957. https://doi.org/10.1016/j.indcrop.2022.114957

    Article  CAS  Google Scholar 

  126. Yu R, Liang S, Ru Y, Li L, Wang Z, Chen J, Chen L (2022) A facile preparation of multicolor carbon dots. Nanoscale Res Lett 17:32. https://doi.org/10.1186/s11671-022-03661-z

    Article  CAS  Google Scholar 

  127. Algahtani A, Khan SH, Islam S, Yadav KK, Jeon B (2021) Advances in the methods for the synthesis of carbon dots and their emerging applications. Polymers. https://doi.org/10.3390/polym13183190

    Article  Google Scholar 

  128. Liu L, Mi Z (2019) Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection. Anal Methods. https://doi.org/10.1039/c8ay02361a

    Article  Google Scholar 

  129. Chung S, Zhang M (2021) Microwave-assisted synthesis of carbon dot–iron oxide nanoparticles for fluorescence imaging and therapy. Front Bioeng Biotechnol. 9:711534. https://doi.org/10.3389/fbioe.2021.711534

    Article  Google Scholar 

  130. Qin J, Zhang L, Yang R (2019) Solid pyrolysis synthesis of excitation-independent emission carbon dots and its application to isoniazid detection. J Nanopart Res. https://doi.org/10.1007/s11051-019-4503-8

    Article  Google Scholar 

  131. Chen Q-L, Ji W-Q, Chen S (2016) Direct synthesis of multicolor fluorescent hollow carbon spheres encapsulating enriched carbon dots. Sci Rep 6:1–8. https://doi.org/10.1038/srep19382

    Article  CAS  Google Scholar 

  132. Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L (2021) Applications of carbon dots on tumour theranostics. View 2:20200061. https://doi.org/10.1002/viw.20200061

    Article  CAS  Google Scholar 

  133. Li C, Qin Z, Wang M, Liu W, Jiang H, Wang X (2020) Analytica Chimica Acta Manganese oxide doped carbon dots for temperature-responsive biosensing and target bioimaging. Anal Chim Acta. https://doi.org/10.1016/j.aca.2020.01.001

    Article  Google Scholar 

  134. Zhang H, Wang G, Zhang Z, Lei JH, Liu T, Xing G, Deng C, Tang Z, Qu S (2022) One step synthesis of efficient red emissive carbon dots and their bovine serum albumin composites with enhanced multi-photon fluorescence for in vivo bioimaging. Light Sci Appl 11(1):113. https://doi.org/10.1038/s41377-022-00798-5

    Article  CAS  Google Scholar 

  135. Pandey PK, Preeti RK, Prasad T, Bohidar HB (2020) Multifunctional fluorescent DNA-derived carbon dots for biomedical applications: bioimaging luminescent DNA hydrogels and dopamine detection. J Mater Chem B 8:1277–1289. https://doi.org/10.1039/c9tb01863h

    Article  CAS  Google Scholar 

  136. Sahu BP, Mitra R (2017) Effect of annealing and process parameters on microstructure and properties of DC Magnetron Sputtered Ni-Zr alloy thin films. MRS Adv 2:1441–1448. https://doi.org/10.1557/adv.2017.122

    Article  CAS  Google Scholar 

  137. Sun Y, Zheng S, Liu L, Kong Y, Zhang A, Xu K, Han C (2020) The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery. Nanoscale Res Lett 15:1–9. https://doi.org/10.1186/s11671-020-3288-0

    Article  CAS  Google Scholar 

  138. Qiu S, Lin Z, Zhou Y, Wang D, Yuan L, Wei Y, Dai T, Luo L, Chen G (2015) Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. Analyst 140:1149–1154. https://doi.org/10.1039/c4an02106a

    Article  CAS  Google Scholar 

  139. He X, Luo Q, Zhang J, Chen P, Wang H, Luo K, Yu X (2019) Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale. https://doi.org/10.1039/c9nr03988k

    Article  Google Scholar 

  140. Luo T, Nie Y, Lu J, Bi Q, Cai Z, Song X, Ai H, Jin R (2021) Iron doped carbon dots based nanohybrids as a tetramodal imaging agent for gene delivery promotion and photothermal-chemodynamic cancer synergistic theranostics. Mater Des 208:109878. https://doi.org/10.1016/j.matdes.2021.109878

    Article  CAS  Google Scholar 

  141. Emam HE, Ahmed HB (2021) Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol 170:688–700. https://doi.org/10.1016/j.ijbiomac.2020.12.151

    Article  CAS  Google Scholar 

  142. Du T, Dong N, Fang L, Lu J, Bi J, Xiao S, Han H (2018) Multi-site inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater 1(10):5451–5459. https://doi.org/10.1021/acsanm.8b00779

    Article  CAS  Google Scholar 

  143. Yang X, Li P, Tang W, Du S, Yu M, Lu H, Tan H, Xing X (2021) A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity. Carbohydr Polym 251:117040. https://doi.org/10.1016/j.carbpol.2020.117040

    Article  CAS  Google Scholar 

  144. Cui F, Sun J, Ji J, Yang X, Wei K, Xu H, Gu Q, Zhang Y, Sun X (2020) Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124330

    Article  Google Scholar 

  145. Bai Y, Zhao J, Wang S, Lin T, Ye F, Zhao S (2021) Carbon dots with absorption red-shifting for two-photon fluorescence imaging of tumor tissue ph and synergistic phototherapy. ACS Appl Mater Interfaces 13(30):35365–35375. https://doi.org/10.1021/acsami.1c08076

    Article  CAS  Google Scholar 

  146. Li Y, Zheng X, Zhang X, Liu S, Pei Q, Zheng M (2016) Porphyrin-based carbon dots for photodynamic therapy of hepatoma. Adv Healthc Mater. https://doi.org/10.1002/adhm.201600924

    Article  Google Scholar 

  147. Qin X, Liu J, Zhang Q, Chen W, Zhong X, He J (2021) Synthesis of yellow-fluorescent carbon nano-dots by microplasma for imaging and photocatalytic inactivation of cancer cells. Nanoscale Res Lett 16:1–9. https://doi.org/10.1186/s11671-021-03478-2

    Article  CAS  Google Scholar 

  148. Chai Y, Feng Y, Zhang K, Li J (2020) Preparation of fluorescent carbon dots composites and their potential applications in biomedicine and drug delivery: a review. Pharmaceutics 14(11):2482. https://doi.org/10.3390/pharmaceutics14112482

    Article  CAS  Google Scholar 

  149. Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent developments of carbon dots in biosensing: a review. ACS Sensors 5(9):2724–2741. https://doi.org/10.1021/acssensors.0c01556

    Article  CAS  Google Scholar 

  150. Namdari P, Negahdari B, Eatemadi A (2017) ScienceDirect synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222. https://doi.org/10.1016/j.biopha.2016.12.108

    Article  CAS  Google Scholar 

  151. Zulfajri M, Abdelhamid HN, Sudewi S, Dayalan S (2020) Plant part-derived carbon dots for biosensing. Biosensors 10(6):68. https://doi.org/10.3390/bios10060068

    Article  CAS  Google Scholar 

  152. Mohammadi S, Salimi A, Hoseinkhani Z, Ghasemi F, Mansouri K (2022) Carbon dots hybrid for dual fluorescent detection of microRNA - 21 integrated bioimaging of MCF: 7 using a microfluidic platform. J Nanobiotechnol. https://doi.org/10.1186/s12951-022-01274-3

    Article  Google Scholar 

  153. Das P, Ganguly S, Bose M, Mondal S, Choudhary S (2018) Materials Science and Engineering C Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater Sci Eng C 88:115–129. https://doi.org/10.1016/j.msec.2018.03.010

    Article  CAS  Google Scholar 

  154. Majumdar S, Thakur D, Chowdhury D (2020) DNA carbon-nanodots based electrochemical biosensor for detection of mutagenic nitrosamines. ACS Appl Bio Mater 3:1796–1803. https://doi.org/10.1021/acsabm.0c00073

    Article  CAS  Google Scholar 

  155. Pandey PK, Rawat K, Prasad T, Bohidar HB (2020) Multifunctional, fluorescent DNA-derived carbon dots for biomedical applications: bioimaging, luminescent DNA hydrogels, and dopamine detection. J Mater Chem B 8(6):1277–1289. https://doi.org/10.1039/C9TB01863H

    Article  CAS  Google Scholar 

  156. Bhamore JR, Jha S, Park TJ, Kailasa SK (2019) Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. J Photochem Photobiol B Biol 191:150–155. https://doi.org/10.1016/j.jphotobiol.2018.12.023

    Article  CAS  Google Scholar 

  157. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots: emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603. https://doi.org/10.1016/j.nantod.2014.09.004

    Article  CAS  Google Scholar 

  158. Lim SY, Shen W, Gao Z (2014) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381. https://doi.org/10.1039/C4CS00269E

    Article  Google Scholar 

  159. Zheng S, Yu N, Han C, Xie T, Dou B, Kong Y, Zuo F, Shi M, Xu K (2019) Biochemical and biophysical research communications preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fl uorescence labeling. Biochem Biophys Res Commun 511:207–213. https://doi.org/10.1016/j.bbrc.2019.01.098

    Article  CAS  Google Scholar 

  160. Jung YK, Shin E, Kim B-S (2015) Cell nucleus-targeting zwitterionic carbon dots. Sci Rep 5:18807. https://doi.org/10.1038/srep18807

    Article  CAS  Google Scholar 

  161. Shao D, Lu M, Xu D, Zheng X, Pan Y, Song Y, Xu J, Li M, Zhang M, Li J (2017) Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater Sci 5:1820–1827. https://doi.org/10.1039/c7bm00358g

    Article  CAS  Google Scholar 

  162. Devi P, Saini S, Kim K (2019) Biosensors and Bioelectronics The advanced role of carbon quantum dots in nanomedical applications. Biosens Bioelectron 141:111158. https://doi.org/10.1016/j.bios.2019.02.059

    Article  CAS  Google Scholar 

  163. Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M, Esposito E, Conoci S (2021) Carbon dots as promising tools for cancer diagnosis and therapy. Cancers. https://doi.org/10.3390/cancers13091991

    Article  Google Scholar 

  164. Molaei MJ (2019) Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv. https://doi.org/10.1039/c8ra08088g

    Article  Google Scholar 

  165. Qiu J, Zhang R, Li J, Sang Y, Tang W, Gil PR, Liu H (2015) Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. Int J Nanomed 10:6709. https://doi.org/10.2147/IJN.S91864

    Article  CAS  Google Scholar 

  166. Soumya K, More N, Choppadandi M, Aishwarya DA, Singh G, Kapusetti G (2023) A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. Biomed Technol 4:11–20. https://doi.org/10.1016/j.bmt.2023.01.005

    Article  Google Scholar 

  167. Zhao Q, Wang S, Yang Y, Li X, Di D, Zhang C, Jiang T, Wang S (2017) Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2017.04.059

    Article  Google Scholar 

  168. Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11(41):19214–19224. https://doi.org/10.1039/C9NR05647E

    Article  CAS  Google Scholar 

  169. Mohammadinejad R, Dadashzadeh A, Moghassemi S, Ashrafizadeh M, Dehshahri A, Pardakhty A, Sassan H, Sohrevardi S-M, Mandegary A (2019) Shedding light on gene therapy: carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs-A review. J Adv Res 18:81–93. https://doi.org/10.1016/j.jare.2019.01.004

    Article  CAS  Google Scholar 

  170. Wu Y, Li C, Van Der Mei HC, Busscher HJ, Ren Y (2021) Carbon quantum dots derived from different carbon sources for antibacterial applications. Antibiotics 10(6):623. https://doi.org/10.3390/antibiotics10060623

    Article  CAS  Google Scholar 

  171. Dong X, Liang W, Meziani MJ, Sun Y-P, Yang L (2020) Carbon dots as potent antimicrobial agents. Theranostics 10:671–686. https://doi.org/10.7150/thno.39863

    Article  CAS  Google Scholar 

  172. Ghirardello M, Ramos-Soriano J, Galan MC (2021) Carbon dots as an emergent class of antimicrobial agents. Nanomaterials 11:1877. https://doi.org/10.3390/nano11081877

    Article  CAS  Google Scholar 

  173. Anand A, Manavalan G, Mandal RP, Chang H-T, Chiou Y-R, Huang C-C (2019) Carbon dots for bacterial detection and antibacterial applications-a mini review. Curr Pharm Des 25:4848–4860. https://doi.org/10.2174/1381612825666191216150948

    Article  CAS  Google Scholar 

  174. Varghese M, Balachandran M (2021) Antibacterial efficiency of carbon dots against gram-positive and gram-negative bacteria: a review. J Environ Chem Eng 9:106821. https://doi.org/10.1016/j.jece.2021.106821

    Article  CAS  Google Scholar 

  175. Kwee Y, Zhou Y, Fahmi MZ, Sharon M, Kristanti AN (2022) Progress on applying carbon dots for inhibition of RNA virus infection. Nanotheranostics 6:436–450. https://doi.org/10.7150/ntno.73918

    Article  Google Scholar 

  176. Miao Y, Wang S, Zhang B, Liu L (2023) Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages. Front Immunol 14:1133238. https://doi.org/10.3389/fimmu.2023.1133238

    Article  CAS  Google Scholar 

  177. Belza J, Opletalová A, Poláková K (2021) Carbon dots for virus detection and therapy. Microchim Acta. https://doi.org/10.1007/s00604-021-05076-6

    Article  Google Scholar 

  178. Barras A, Giovanelli E, Aleksandra Ł, Se K, Belouzard S, Chen Y, Metzler-nolte N, Boukherroub R, Dubuisson J, Szunerits S (2019) Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b15032

    Article  Google Scholar 

  179. Innocenzi P, Stagi L (2020) Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 11:6606–6622. https://doi.org/10.1039/d0sc02658a

    Article  CAS  Google Scholar 

  180. Tsoi KM, Dai QIN, Alman BA, Chan WC (2013) Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res 46(3):662–671. https://doi.org/10.1021/ar300040z

    Article  CAS  Google Scholar 

  181. Fan C-H, Wu N, Yeh C-K (2023) Enhanced sonodynamic therapy by carbon dots-shelled microbubbles with focused ultrasound. Ultrason Sonochem 94:106342. https://doi.org/10.1016/j.ultsonch.2023.106342

    Article  CAS  Google Scholar 

  182. Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WCW (2010) In vivo quantum-dot toxicity assessment. Small 6:138–144. https://doi.org/10.1002/smll.200900626

    Article  CAS  Google Scholar 

  183. Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I (2022) Carbon dot therapeutic platforms: administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small 18:2106342. https://doi.org/10.1002/smll.202106342

    Article  CAS  Google Scholar 

  184. Sun Y, Zhang M, Bhandari B, Yang C (2020) Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods recent development of carbon quantum dots: biological toxicity. Food Rev Int 00:1–20. https://doi.org/10.1080/87559129.2020.1818255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Barhoum or Amin Meftahi.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barhoum, A., Meftahi, A., Kashef Sabery, M.S. et al. A review on carbon dots as innovative materials for advancing biomedical applications: synthesis, opportunities, and challenges. J Mater Sci 58, 13531–13579 (2023). https://doi.org/10.1007/s10853-023-08797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08797-6

Navigation