Skip to main content
Log in

Effects of molecular shapes, molecular weight, and types of edges on peak positions of C1s X-ray photoelectron spectra of graphene-related materials and model compounds

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocarbon materials such as graphene and graphene nanoribbons (GNRs) have been studied for various applications such as electrodes and catalysts. For precise analyses of nanocarbon materials, analyses other than conventionally used analyses such as Raman and infrared spectroscopies and microscopies are essential. C1s X-ray photoelectron spectroscopy (XPS) is one of the general techniques used to analyze the structures of carbon materials. However, XPS has not been commonly utilized to investigate the structures of carbon materials in detail. In this work, the relevance of molecular shapes, molecular sizes, and types of edges on peak positions of C1s XPS spectra were revealed. For example, adjusted peak positions of C1s spectra of rectangular graphene-like structures such as GNRs tended to be higher than those of triangle or hexagonal graphene-like structures at the same atomic ratio of H/C mainly because rectangular structures of GNRs enhanced the conjugation more than those of hexagonal and triangle structures of graphene-related materials. Besides, the structures of graphene-related materials, such as rectangular with either zigzag or armchair edges, triangle, hexagonal, and the other structures, can be estimated without using a microscope by measuring combustion elemental analysis, mass spectrometry, C1s XPS spectra, and the highest occupied molecular orbital and comparing them with the tendencies of H/C ratio and molecular weight versus adjusted peak positions of C1s XPS spectra. Moreover, the reasons for the shift and the broadening of experimental C1s XPS spectra have been revealed to be the charge-up effect caused by the large size of the powder of analyzed compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2017) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Radushkevich LV, Lukyanovich VM (1952) The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Sov J Phys Chem 26:88–95

    CAS  Google Scholar 

  3. Ijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  4. Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217

    Article  CAS  Google Scholar 

  5. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71

    Article  CAS  Google Scholar 

  6. Agudosi ES, Abdullah EC, Numan A, Mubarak NM, Khalid M, Omar N (2020) A review of the graphene synthesis routes and its applications in electrochemical energy storage. Crit Rev Solid State Mater Sci 45:339–377

    Article  CAS  Google Scholar 

  7. Zhang Y, Heo YJ, Son YR, In I, An KH, Kim BJ, Park SJ (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460

    Article  CAS  Google Scholar 

  8. González M, Pozuelo J, Baselga J (2018) Electromagnetic shielding materials in GHz range. Chem Rec 18:1000–1009

    Article  CAS  Google Scholar 

  9. Wu N, Hu Q, Wei R, Mai X, Naik N, Pan D, Guo Z, Shi Z (2021) Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 176:88–105

    Article  CAS  Google Scholar 

  10. Li X, Yu J, Wageh S, Al-Ghamdi AA, Xie J (2016) Graphene in photocatalysis: a review. Small 12:6640–6696

    Article  CAS  Google Scholar 

  11. Amollo TA, Mola GT, Kirui MSK, Nyamori VO (2018) Graphene for thermoelectric applications: prospects and challenges. Crit Rev Solid State Mater Sci 43:133–157

    Article  CAS  Google Scholar 

  12. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: An overview. Int J Hydrog Energy 40:948–979

    Article  CAS  Google Scholar 

  13. Mohan VB, Lau K, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B: Eng 142:200–220

    Article  CAS  Google Scholar 

  14. Tao L, Wang Q, Dou S, Ma Z, Huo J, Wang S, Dai L (2016) Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun 52:2764–2767

    Article  CAS  Google Scholar 

  15. Ikeda T, Hou Z, Chai GL, Terakura K (2014) Possible oxygen reduction reactions for graphene edges from first principles. J Phys Chem C 118:17616–17625

    Article  CAS  Google Scholar 

  16. Pak AJ, Paek E, Hwang GS (2014) Impact of graphene edges on enhancing the performance of electrochemical double layer capacitors. J Phys Chem C 118:21770–21777

    Article  CAS  Google Scholar 

  17. Zhan C, Zhang Y, Cummings PT, Jiang D (2017) Computational insight into the capacitive performance of graphene edge planes. Carbon 116:278–285

    Article  CAS  Google Scholar 

  18. Afshari F, Ghaffarian M (2017) Electronic properties of zigzag and armchair graphene nanoribbons in the external electric and magnetic fields. Physica E 89:86–92

    Article  CAS  Google Scholar 

  19. Kobayashi Y, Fukui K, Enoki T, Kusakabe K, Kaburagi Y (2005) Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B 71:193406

    Article  CAS  Google Scholar 

  20. Kobayashi Y, Fukui K, Enoki T, Kusakabe K (2006) Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys Rev B 73:125415

    Article  CAS  Google Scholar 

  21. Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739

    Article  CAS  Google Scholar 

  22. Kim J, Lee N, Min YH, Noh S, Kim N, Jung S, Joo M, Yamada Y (2018) Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies. ACS Omega 3:17789–17796

    Article  CAS  Google Scholar 

  23. Yamada Y, Tanaka H, Kubo S, Sato S (2021) Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy. Carbon 185:342–367

    Article  CAS  Google Scholar 

  24. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754

    Article  CAS  Google Scholar 

  25. Yamaguchi J, Hayashi H, Jippo H, Shiotari A, Ohtomo M, Sakakura M, Hieda N, Aratani N, Ohfuchi M, Sugimoto Y, Yamada H, Sato S (2020) Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Commun Mater 1:36

    Article  Google Scholar 

  26. Stein SE, Brown RL (1987) pi.-Electron properties of large condensed polyaromatic hydrocarbons. J Am Chem Soc 109:3721–3729

    Article  CAS  Google Scholar 

  27. Yano Y, Mitoma N, Ito H, Itami K (2020) A quest for structurally uniform graphene nanoribbons: synthesis, properties, and applications. J Org Chem 85:4–33

    Article  CAS  Google Scholar 

  28. Geoenewege MP (1956) Some regularities in the infra-red spectra of polynuclear aromatic compounds in the C-H wagging region. Spectrochim Acta 11:579–575

    Article  Google Scholar 

  29. Aihara J (1987) Photochemical stability of polycyclic aromatic hydrocarbons in the interstellar medium. Bull Chem Soc Jpn 60:3143–3147

    Article  CAS  Google Scholar 

  30. Hony S, Kerckhoven C, Peeters E, Tielens AGGM, Hudgins DM, Allamandola LJ (2001) The CH out-of-plane bending modes of PAH molecules in astrophysical environments. Astron Astrophys 370:1030–1043

    Article  Google Scholar 

  31. Hu A, Duley WW (2008) Surface enhanced Raman spectroscopic characterization of molecular structures in diamond-like carbon films. Chem Phys Lett 450:375–378

    Article  CAS  Google Scholar 

  32. Sadjadi S, Zhang Y, Kwok S (2015) On the origin of the 11.3 micron unidentified infrared emission feature. Astrophys J 807(1):95

    Article  CAS  Google Scholar 

  33. Pauzat F, Talbi D, Ellinger Y (1997) The PAH hypothesis: a computational experiment on the combined effects of ionization and dehydrogenation on the IR signatures. Astron Astrophys 319:318–330

    CAS  Google Scholar 

  34. Centrone A, Brambilla L, Renouard T, Gherghel L, Mathis C, Müllen K, Zerbi G (2005) Structure of new carbonaceous materials: The role of vibrational spectroscopy. Carbon 43:1593–1609

    Article  CAS  Google Scholar 

  35. Bauschlicher CW Jr, Peeters E, Allamandola LJ (2009) The infrared spectra of very large irregular polycyclic aromatic hydrocarbons (PAHs): observational probes of astronomical PAH geometry, size and charge. Astrophys J 697:311–327

    Article  CAS  Google Scholar 

  36. Tommasini M, Lucotti A, Alfè M, Ciajolo A, Zerbi G (2016) Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. Spectrochim Acta A 152:134–148

    Article  CAS  Google Scholar 

  37. Chang Q, Gao R, Li H, Yu G, Wang F (2018) Effect of CO2 on the characteristics of soot derived from coal rapid pyrolysis. Combust Flame 197:328–339

    Article  CAS  Google Scholar 

  38. Wu B, Geng D, Guo Y, Huang L, Xue Y, Zheng J, Chen J, Yu G, Liu Y, Jiang L, Hu W (2011) Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv Mater 23:3522–3525

    Article  CAS  Google Scholar 

  39. Mohsin A, Liu L, Liu P, Deng W, Ivanov IN, Li G, Dyck EO, Duscher G, Dunlap RJ, Xiao K, Gu G (2013) Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano 7:8924–8931

    Article  CAS  Google Scholar 

  40. Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L, Ma X, Ding F, Cheng H (2013) Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc Natl Acad Sci USA 110:20386–20391

    Article  CAS  Google Scholar 

  41. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei S, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443–449

    Article  CAS  Google Scholar 

  42. Wu B, Geng D, Xu Z, Guo Y, Huang L, Xue Y, Chen J, Yu G, Liu Y (2013) Self-organized graphene crystal patterns. NPG Asia Mater 5:e36

    Article  CAS  Google Scholar 

  43. Simonov KA, Vinogradov NA, Vinogradov AS, Generalov AV, Zagrebina EM, Mårtensson N, Cafolla AA, Carpy T, Cunniffe JP, Preobrajenski AB (2014) Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: combined core-level spectroscopy and STM study. J Phys Chem C 118:12532–12540

    Article  CAS  Google Scholar 

  44. Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Peter L (2015) Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun 6:10177

    Article  CAS  Google Scholar 

  45. Jordan RS, Li YL, Lin C, McCurdy RD, Lin JB, Brosmer JL, Marsh KL, Khan SI, Houk KN, Kaner RB, Rubin Y (2017) Synthesis of N = 8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. J Am Chem Soc 139:15878–15890

    Article  CAS  Google Scholar 

  46. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  CAS  Google Scholar 

  47. Chen X, Liu S, Liu L, Liu X, Liu X, Wang L (2012) Growth of triangle-shape graphene on Cu(111) surface. Appl Phys Lett 100:163106

    Article  CAS  Google Scholar 

  48. Wei E, Jin J, Wang Z, Lu Y, Wang L (2017) Spatially resolving and energy splitting of edge state in zigzag edged triangle graphene quantum dots on Cu(111) surface. Phys E Low Dimens Syst Nanostruct 89:10–14

    Article  CAS  Google Scholar 

  49. Bronner C, Marangoni T, Rizzo DJ, Durr RA, Jørgensen JH, Fischer FR, Crommie MF (2017) Iodine versus bromine functionalization for bottom-up graphene nanoribbon growth: role of diffusion. J Phys Chem C 121:18490–18495

    Article  CAS  Google Scholar 

  50. Chen Z, Zhang W, Palma CA, Rizzini AL, Liu B, Abbas A, Richter N, Martini L, Wang X, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C, Renzi VD, Pennino U, Barth JV, Räder HJ, Narita A, Feng X, Müllen K (2016) Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J Am Chem Soc 138:15488–15496

    Article  CAS  Google Scholar 

  51. Yang W, Lucotti A, Tommasini M, Chalifoux WA (2016) Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J Am Chem Soc 138:9137–9144

    Article  CAS  Google Scholar 

  52. Narita A, Verzhbitskiy IA, Frederickx W, Mali KS, Jensen SA, Hansen MR, Bonn M, Feyter S, Casiraghi C, Feng X, Müllen K (2014) Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano 8:11622–11630

    Article  CAS  Google Scholar 

  53. Suenaga K, Koshino M (2010) Atom-by-atom spectroscopy at graphene edge. Nature 468:1088–1090

    Article  CAS  Google Scholar 

  54. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708

    Article  CAS  Google Scholar 

  55. Kim K, Coh S, Kisielowski C, Crommie MF, Louie SG, Cohen ML, Zettl A (2013) Atomically perfect torn graphene edges and their reversible reconstruction. Nat Commun 4:2723

    Article  CAS  Google Scholar 

  56. Yamada Y, Murota K, Fujita R, Kim J, Watanabe A, Nakamura M, Sato S, Hata K, Peter E, Ciston J, Song C, Kim K, Regan W, Gannett W, Zettl A (2014) Subnanometer vacancy defects introduced on graphene by oxygen gas. J Am Chem Soc 136:2232–2235

    Article  CAS  Google Scholar 

  57. Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731

    Article  CAS  Google Scholar 

  58. Fuente E, Menéndez JA, Díez MA, Suárez D, Montes-Morán MA (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J Phys Chem B 107:6350–6359

    Article  CAS  Google Scholar 

  59. Yamada Y, Masaki S, Sato S (2020) Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy. J Mater Sci 55:10522–10542. https://doi.org/10.1007/s10853-020-04786-1

    Article  CAS  Google Scholar 

  60. Kanazawa S, Yamada Y, Sato S (2021) Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C-H (methyl or methylene groups). J Mater Sci 56:12285–12314. https://doi.org/10.1007/s10853-021-06001-1

    Article  CAS  Google Scholar 

  61. Yamada Y, Gohda S, Abe K, Togo T, Shimano N, Sasaki T, Tanaka H, Ono H, Ohba T, Kubo S, Ohkubo T, Sato S (2017) Carbon materials with controlled edge structures. Carbon 122:694–701

    Article  CAS  Google Scholar 

  62. Tommasini M, Lucotti A, Alfè M, Ciajolo A, Zerbi G (2016) Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 152:134–148

    Article  CAS  Google Scholar 

  63. Diana N, Yamada Y, Gohda S, Ono H, Kubo S, Sato S (2021) Carbon materials with high pentagon density. J Mater Sci 56:2912–2943. https://doi.org/10.1007/s10853-020-05392-x

    Article  CAS  Google Scholar 

  64. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by raman spectroscopy. Nano Lett 12:3925–3930

    Article  CAS  Google Scholar 

  65. Smith MW, Dallmeyer I, Johnson TJ, Brauer CS, McEwen JS, Espinal JF, Garcia-Perez M (2016) Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles. Carbon 100:678–692

    Article  CAS  Google Scholar 

  66. Enoki T, Fujii S, Takai K (2012) Zigzag and armchair edges in graphene. Carbon 50:3141–3145

    Article  CAS  Google Scholar 

  67. Kitao T, MacLean MWA, Nakata K, Takayanagi M, Nagaoka M, Uemura T (2020) Scalable and precise synthesis of armchair-edge graphene nanoribbon in metal-organic framework. J Am Chem Soc 142:5509–5514

    Article  CAS  Google Scholar 

  68. Mazur AS, Vovk MA, Tolstoy PM (2020) Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fuller Nanotub Carbon Nanostruct 28:202–213

    Article  CAS  Google Scholar 

  69. de Souza FAL, Ambrozio AR, Souza ES, Cipriano DF, Scopel WL, Freitas JCC (2016) NMR spectral parameters in graphene, graphite, and related materials: ab initio calculations and experimental results. J Phys Chem C 120:27707–27716

    Article  CAS  Google Scholar 

  70. He H, Riedl T, Lerf A, Klinowski J (1996) Solid-state NMR studies of the structure of graphite oxide. J Phys Chem 100:19954–19958

    Article  CAS  Google Scholar 

  71. Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S (2021) Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58–80

    Article  CAS  Google Scholar 

  72. Gohda S, Yamada Y, Murata M, Saito M, Kanazawa S, Ono H, Sato S (2020) Bottom-up synthesis of highly soluble carbon materials. J Mater Sci 55:11808–11828. https://doi.org/10.1007/s10853-020-04813-1

    Article  CAS  Google Scholar 

  73. Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198. https://doi.org/10.1007/s10853-013-7630-0

    Article  CAS  Google Scholar 

  74. Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74

    Article  CAS  Google Scholar 

  75. Kato T, Yamada Y, Nishikawa Y, Otomo T, Sato H, Sato S (2021) Origins of peaks of graphitic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary or tertiary nitrogen? J Mater Sci 56:15798–15811. https://doi.org/10.1007/s10853-021-06283-5

    Article  CAS  Google Scholar 

  76. Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S, Sato S (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326

    Article  CAS  Google Scholar 

  77. Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084

    Article  CAS  Google Scholar 

  78. Kanazawa S, Yamada Y, Gohda S, Sato S (2021) Bottom-up synthesis of oxygen-containing carbon materials using a lewis acid catalyst. J Mater Sci 56:15698–15717. https://doi.org/10.1007/s10853-021-06284-4

    Article  CAS  Google Scholar 

  79. Susi T, Pichler T, Ayala P (2015) X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J Nanotechnol 6:177–192

    Article  CAS  Google Scholar 

  80. Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y, Suenaga K, Sato S (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94

    Article  CAS  Google Scholar 

  81. Yamada Y, Miyauchi M, Kim J, Takai KH, Sato Y, Suenaga K, Ohba T, Sodesawa T, Sato S (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378

    Article  CAS  Google Scholar 

  82. Fujimoto A, Yamada Y, Koinuma M, Sato S (2016) Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal Chem 88:6110–6114

    Article  CAS  Google Scholar 

  83. Susi T, Kaukonen M, Havu P, Ljungberg MP, Ayala P, Kauppinen EI (2014) Core level binding energies of functionalized and defective graphene. Beilstein J Nanotechnol 5:121–132

    Article  CAS  Google Scholar 

  84. Kim J, Yamada Y, Kawai M, Tanabe T, Sato S (2015) Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene. J Mater Sci 50:6739–6747. https://doi.org/10.1007/s10853-015-9229-0

    Article  CAS  Google Scholar 

  85. Kim J, Lee N, Choi DY, Kim DY, Kawai R, Yamada Y (2021) Pentagons and heptagons on edges of graphene nanoflakes analyzed by X-ray photoelectron and Raman spectroscopies. J Phys Chem Lett 12:9955–9962

    Article  CAS  Google Scholar 

  86. Kim J, Han JW, Yamada Y (2021) Heptagons in the basal plane of graphene nanoflakes analyzed by simulated X-ray photoelectron spectroscopy. ACS Omega 6:2389–2395

    Article  CAS  Google Scholar 

  87. Kelemen SR, Rose KD, Kwiatek PJ (1993) Carbon aromaticity based on XPS II to II∗ signal intensity. Appl Surf Sci 64:167–173

    Article  CAS  Google Scholar 

  88. Estrade-Szwarckopf E (2004) XPS photoemission in carbonaceous materials: a defect peak beside the graphitic asymmetric peak. Carbon 42:1713–1721

    Article  CAS  Google Scholar 

  89. Smith M, Scudiero L, Espinal J, McEwen JS, Garcia-Perez M (2016) Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. Carbon 110:155–171

    Article  CAS  Google Scholar 

  90. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, revision E.01. Gaussian Inc, Wallingford, CT

  91. Kojima I, Fukumoto N, Kurahashi M (1986) Analysis of X-ray photoelectron spectrum with asymmetric Gaussian-Lorentzian mixed function. Bunseki Kagaku 35:T96-T100. [written in Japanese]

  92. Solà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem 1:1–8

    Article  CAS  Google Scholar 

  93. Wu JB, Lin YF, Wang J, Chang PJ, Tasi CP, Lu CC, Chiu HT, Yang YW (2003) Correlation between N 1s XPS binding energy and bond distance in metal amido, imido, and nitrido complexes. Inorg Chem 42:4516–4518

    Article  CAS  Google Scholar 

  94. Yamada Y, Tanaka H, Tanaka Y, Kubo S, Taguchi T, Sato S (2022) Toward strategical bottom-up synthesis of carbon materials with exceptionally high pyridinic-nitrogen content: development of screening techniques. Carbon 198:411-434. https://doi.org/10.1016/j.carbon.2022.06.069

  95. Anno T, Ito M, Shimada R, Sado A, Mizushima W (1957) Relations among bond order, force constant and bond length for the C-C and the C-N bond in conjugated molecules. Bull Chem Soc Jpn 30:638–647

    Article  CAS  Google Scholar 

  96. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  CAS  Google Scholar 

  97. Zarenia M, Chaves A, Farias GA, Peeters FM (2011) Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach. Phys Rev B 84:245403

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP21K04773.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kumiko Mori or Yasuhiro Yamada.

Ethics declarations

Conflict of interest

Conflict of interest the authors declare that they do not have any conflict of interest

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3234 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, K., Kim, J., Kubo, S. et al. Effects of molecular shapes, molecular weight, and types of edges on peak positions of C1s X-ray photoelectron spectra of graphene-related materials and model compounds. J Mater Sci 57, 15789–15808 (2022). https://doi.org/10.1007/s10853-022-07599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07599-6

Navigation