Skip to main content

Advertisement

Log in

Wear resistance of surface-modified TiNbSn alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The wear resistance of TiNbSn alloy surfaces treated by plasma nitriding, TiN sputtering, and anodic oxidation was investigated with the goal of suppressing the release of wear debris that can act as abrasive particles. Among the investigated alloys, the anodized alloy exhibited the highest hardness, adhesive strength, surface roughness, and the lowest friction coefficient (COF) under dry conditions as well as in simulated body fluids of Hank’s balanced salt solution. Wear tracks on the treated alloys, other than the anodized alloy, showed well-defined plow contours owing to adhesive galling accompanied by plastic deformation, and a significant amount of debris was observed on the wear surface. In contrast, in the anodized alloy, the wear track was barely visible (grooves were shallow), and only a few debris objects were observed. The COF under wet conditions was found to be the same as that in the dry condition for the treated alloys except for the anodized alloy, which exhibited a reduced COF under wet conditions. Significant amounts of Si originating from the counter-body SiC were observed on the worn surfaces of the treated alloys, except for the anodized alloy, and the surface of the SiC ball was severely damaged. In contrast, for the anodized alloy, no trace of Si was detected and the surface of the SiC ball was not damaged. It is concluded that the high wear resistance of the anodized alloy can be attributed to the reduced damage afforded by the strongly bonded thick oxide with a hardened rough surface, and that the hydrophilic rough surface reduced the COF under wet wear conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Savio JA, Overcamp LM, Black J (1994) Size and shape of biomaterial wear debris. Clinic Mater 15:101–147. https://doi.org/10.1016/0267-6605(94)90076-0

    Article  Google Scholar 

  2. Bostman O, Pihlajamaki H (2000) Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomater 21:2615–2621. https://doi.org/10.1016/s0142-9612(00)00129-0

    Article  CAS  Google Scholar 

  3. Matusiewicz H (2014) Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles—a systematic analytical review. Acta Biomater 10:2379–2403. https://doi.org/10.1016/j.actbio.2014.02.027

    Article  CAS  Google Scholar 

  4. Gill IPS, Webb J, Sloan K, Beaver RJ (2012) Corrosion at the neck-stem junction as a cause of metal ion release and pseudotumour formation. J Bone Jt Surg 94B:895–900. https://doi.org/10.1302/0301-620X.94B7.29122

    Article  Google Scholar 

  5. Laura AD, Quinn PD, Panagiotopoulou VC, Hothi HS, Henckel J, Powell JJ, Berisha F, Amary F, Mosselmans JW, Skinner JA, Hart AJ (2017) The chemical form of metal species released from corroded taper junctions of hip implants: synchrotron analysis of patient tissue. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-11225-w

    Article  CAS  Google Scholar 

  6. Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R87:1–57. https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  7. Kirmanidou Y, Sidira M, Drosou ME, Bennani V, Bakopoulou A, Tsouknidas A, Michailidis N, Michalakis K (2016) New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: a review. Biomed Res Int. https://doi.org/10.1155/2016/2908570

    Article  Google Scholar 

  8. Dearnley PA (1999) A review of metallic, ceramic and surface treated metals used for bearing surfaces in human joint replaces. Proc Inst Mech Eng 213:107–135. https://doi.org/10.1243/0954411991534843

    Article  CAS  Google Scholar 

  9. Furlong R, Osborn J (1991) Fixation of hip prostheses by hydroxyapatite ceramic coating. Bone Jt J 73B:741–745. https://doi.org/10.1302/0301-620X.73B5.1654336

    Article  Google Scholar 

  10. Fomin A, Fomina M, Koshuro V, Rodionov I, Zakharevich A, Skaptsov A (2017) Structure and mechanical properties of hydroxyapatite coatings produced on titanium using plasma spraying with induction preheating. Ceram Int 43:11189–11196. https://doi.org/10.1016/j.ceramint.2017.05.168

    Article  CAS  Google Scholar 

  11. Mendoza C, Gonzalez Z, Gordo E, Ferrari B, Castro Y (2018) Protective nature of nano-TiN coatings shaped by EPD on Ti substrates. J Euro Ceram Soc 38:495–500. https://doi.org/10.1016/j.jeurceramsoc.2017.09.046

    Article  CAS  Google Scholar 

  12. Coll BF, Jacquot P (1988) Surface modification of medical implants and surgical devices using TiN layers. Surf Coat Technol 36:867–878. https://doi.org/10.1016/0257-8972(88)90027-8

    Article  CAS  Google Scholar 

  13. Chung KH, Liu GT, Duh JG, Wang JH (2004) Biocompatibility of a titanium-aluminum nitride film coating on a dental alloy. Surf Coat Technol 188–189:745–749. https://doi.org/10.1016/j.surfcoat.2004.07.050

    Article  CAS  Google Scholar 

  14. Luo Y, Ge S (2009) Fretting wear behavior of nitrogen ion implanted titanium alloys in bovine serum lubrication. Tribology Inter 42:1373–1379. https://doi.org/10.1016/j.triboint.2009.04.009

    Article  CAS  Google Scholar 

  15. Yetim AF (2010) Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf Coat Technol 205:1757–1763. https://doi.org/10.1016/j.surfcoat.2010.08.079

    Article  CAS  Google Scholar 

  16. Kumar S, Narayanan TSNS, Ganesh S, Raman S, Seshadri SK (2010) Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Mater Sci Eng C 30:921–927. https://doi.org/10.1016/j.msec.2010.03.024

    Article  CAS  Google Scholar 

  17. Alves SA, Rossi AL, Ribeiro AR, Toptan F, Pinto AM, Celis JP, Shokuhfar T, Rocha LA (2017) Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: understanding of degradation mechanisms. Wear 384–385:28–42. https://doi.org/10.1016/j.wear.2017.05.005

    Article  CAS  Google Scholar 

  18. Li ZY, Cai ZB, Wu YP, Zhu MH (2017) Effect of nitrogen ion implantation dose on torsional fretting wear behavior of titanium and its alloy. Trans Nonferrous Metals Soc China 27:324–335. https://doi.org/10.1016/S1003-6326(17)60037-2

    Article  CAS  Google Scholar 

  19. Wilson AD, Leyland A, Matthews A (1999) A comparative study of the influence of plasma treatments, PVD coatings and ion implantation on the tribological performance of Ti–6Al–4V. Surf Coat Technol 114:70–80. https://doi.org/10.1016/S0257-8972(99)00024-9

    Article  CAS  Google Scholar 

  20. Qinglong A, Chen J, Tao Z, Ming W, Chen M (2020) Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti-6242S and Ti-555 titanium alloys. Inter J Refractory Met Hard Mater 86:105091. https://doi.org/10.1016/j.ijrmhm.2019.105091

    Article  CAS  Google Scholar 

  21. Subramanian B, Muraleedharan CV, Ananthakumar R, Jayachandran M (2011) A comparative study of titanium nitride (TiN) titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf Coat Technol 205:5014–5020. https://doi.org/10.1016/j.surfcoat.2011.05.004

    Article  CAS  Google Scholar 

  22. Tripathi MK, Singh VB, Singh HK (2015) Structure and properties of electrodeposited functional Ni-Fe/TiN nanocomposite coatings. Surf Coat Technol 278:146–156. https://doi.org/10.1016/j.surfcoat.2015.08.016

    Article  CAS  Google Scholar 

  23. Chen JM, Guo C, Zhou JS (2012) Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate. Trans Nonferrous Metals Soc China 22:2171–2178. https://doi.org/10.1016/S1003-6326(11)61445-3

    Article  CAS  Google Scholar 

  24. Li M, Huang J, Zhu YY, Li ZG (2012) Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding. Surf Coat Technol 206:4021–4026. https://doi.org/10.1016/j.surfcoat.2012.03.082

    Article  CAS  Google Scholar 

  25. Bloyce A, Qi PY, Dong H, Bell T (1998) Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surf Coat Technol 107:125–132. https://doi.org/10.1016/S0257-8972(98)00580-5

    Article  CAS  Google Scholar 

  26. Krishna DSR, Brama YL, Sun Y (2007) Thick rutile layer on titanium for tribological applications. Tribol Int 40:329–334. https://doi.org/10.1016/j.triboint.2005.08.004

    Article  CAS  Google Scholar 

  27. Tsuchiya H, Macak JM, Ghicov A, Tang YC, Fujimoto S, Niinomi M, Noda T, Schmuki P (2006) Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared byself-organizing anodization. Electrochim Acta 52:94–101. https://doi.org/10.1016/j.electacta.2006.03.087

    Article  CAS  Google Scholar 

  28. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241. https://doi.org/10.1021/jp070273h

    Article  CAS  Google Scholar 

  29. Zhang HJ, Daiab JJ, Sun CX, Li SY (2020) Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V. J Mater Process Technol 282:116671. https://doi.org/10.1016/j.jmatprotec.2020.116671

    Article  CAS  Google Scholar 

  30. Phala MF, Popoola API (2019) Wear resistance and morphological characterization of high-power laser clad coatings on Ti–6Al–4V alloy. Procedia Manuf 35:769–774. https://doi.org/10.1016/j.promfg.2019.06.021

    Article  Google Scholar 

  31. O’Neill L, O’Sullivana C, O’Hare P, Sexton L, Keady F, O’Donoghue J (2009) Deposition of substituted apatites onto titanium surfaces using a novelblasting process. Surf Coat Technol 204:484–488. https://doi.org/10.1016/j.surfcoat.2009.08.0

    Article  Google Scholar 

  32. Fleming D, O’Neill L, Byrne G, Barry N, Dowling DP (2011) Wear resistance enhancement of the titanium alloy Ti–6Al–4V via a novel co-incident microblasting process. Surf Coat Technol 205:4941–4947. https://doi.org/10.1016/j.surfcoat.2011.04.076

    Article  CAS  Google Scholar 

  33. Revankar GD, Shetty R, Rao SS, Gaitonde VN (2017) Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. Mater Res Technol 6:13–32. https://doi.org/10.1016/j.jmrt.2016.03.007

    Article  CAS  Google Scholar 

  34. Ganesh BKC, Sha W, Ramanaiah N, Krishnaiah A (2014) Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Mater Des 56:480–486. https://doi.org/10.1016/j.matdes.2013.11.052

    Article  CAS  Google Scholar 

  35. Zhang C, Ding Z, Xie L, Zhang LC, Wu L, Fu Y, Wang L, Lu W (2017) Electrochemical and in vitro behavior of the nanosized composites of Ti–6Al–4V and TiO2 fabricated by friction stir process. Appl Surf Sci 423:331–339. https://doi.org/10.1016/j.apsusc.2017.06.141

    Article  CAS  Google Scholar 

  36. Raphel J, Holodniy M, Goodman SB, Heilshorn SC (2016) Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomater 84:301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016

    Article  CAS  Google Scholar 

  37. Dion I, Rouais F, Ll T, Baquey C, Monties JR, Havlik P (1993) TiN coating surface characterization and haemocompatibility. Biomaterials 14:169–176. https://doi.org/10.1016/0142-9612(93)90019-X

    Article  CAS  Google Scholar 

  38. Long M, Rack HL (1998) Titanium alloys in total joint replacement–a materials science perspective. Biomaterials 19:1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4

    Article  CAS  Google Scholar 

  39. Dai WW, Ding CX, Li JF, Zhang YF, Zhang PY (1996) Wear mechanism of plasma-sprayed TiO2 coating against stainless steel. Wear 196:238–242. https://doi.org/10.1016/0043-1648(95)06901-1

    Article  CAS  Google Scholar 

  40. Wu SL, Liu XM, Yeung KWK, Liu CS, Yang XJ (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36. https://doi.org/10.1016/j.mser.2014.04.001

    Article  Google Scholar 

  41. Jung TK, Lee HS, Semboshi S, Masahashi N, Abumiya T, Hanada S (2012) A new concept of hip joint stem and its fabrication using metastable TiNbSn alloy. J Alloys Compd 536:S582–S585. https://doi.org/10.1016/j.jallcom.2011.12.077

    Article  CAS  Google Scholar 

  42. Hanada S, Masahashi N, Jung TK (2013) Effect of stress-induced α” martensite on Young’s modulus of β Ti–33.6Nb–4Sn alloy. Mater Sci Eng A588:403–410. https://doi.org/10.1016/j.msea.2013.09.053

    Article  CAS  Google Scholar 

  43. Jung TK, Semboshi S, Masahashi N, Hanada S (2013) Mechanical properties and microstructures of β Ti–25Nb–11Sn ternary alloy for biomedical applications. Mater Sci Eng C33:1629–1635. https://doi.org/10.1016/j.msec.2012.12.072

    Article  CAS  Google Scholar 

  44. Ozaki T, Matsumoto H, Watanabe S, Hanada S (2004) Beta Ti alloys with low Young’s modulus. Mater Trans 45:2776–2779. https://doi.org/10.2320/matertrans.45.2776

    Article  CAS  Google Scholar 

  45. Matsumoto H, Watanabe S, Hanada S (2005) Beta TiNbSn alloys with low Young’s modulus and high strength. Mater Trans 46:1070–1078. https://doi.org/10.2320/matertrans.46.1070

    Article  CAS  Google Scholar 

  46. Masahashi N, Mori Y, Kurishima H, Inoue H, Mokudai T, Semboshi S, Hatakeyama M, Itoi E, Hanada S (2021) Photoactivity of an anodized biocompatible TiNbSn alloy prepared in sodium tartrate/hydrogen peroxide aqueous solution. Appl Surf Sci 543:148829. https://doi.org/10.1016/j.apsusc.2020.148829

    Article  CAS  Google Scholar 

  47. Zywitzki O, Modes T, Sahm H, Frach P, Goedicke K, Glöß D (2004) Structure and properties of crystalline titanium oxide layers deposited by reactive pulse magnetron sputtering. Surf Coat Technol 180–181:538–543. https://doi.org/10.1016/j.surfcoat.2003.10.115

    Article  CAS  Google Scholar 

  48. Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172. https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  CAS  Google Scholar 

  49. Habazaki H, Uozumi M, Konno H, Shimizu K, Skelton P, Thompson GE (2003) Crystallization of anodic titania on titanium and its alloys. Corros Sci 45:2063–2073. https://doi.org/10.1016/S0010-938X(03)00040-4

    Article  CAS  Google Scholar 

  50. Liu ZJ, Zhong X, Walton J, Thompson GE (2016) Anodic film growth of titanium oxide using the 3-electrode electrochemical technique: effects of oxygen evolution and morphological characterizations. J Electrochem Soc 163:E75–E82. https://doi.org/10.1149/2.0181603jes

    Article  CAS  Google Scholar 

  51. Fu X, Clark LA, Yang Q, Anderson MA (1996) Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol 30:647–653. https://doi.org/10.1021/es950391v

    Article  CAS  Google Scholar 

  52. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546. https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  53. Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloids Chem 53:14667–21467. https://doi.org/10.1021/j150474a015

    Article  Google Scholar 

  54. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432. https://doi.org/10.1038/41233

    Article  CAS  Google Scholar 

  55. Fujishima A, Rao TN, Tryk DA (2000) TiO2 photocatalysts and diamond electrodes. Electrochim Acta 45:4683–4690. https://doi.org/10.1016/S0013-4686(00)00620-4

    Article  CAS  Google Scholar 

  56. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10:2907–2918. https://doi.org/10.1016/j.actbio.2014.03.032

    Article  CAS  Google Scholar 

  57. Waterhouse BR, Wharton MH (1974) Titanium and tribology. Ind Lubr Tribol 26:20–23. https://doi.org/10.1108/eb053055

    Article  CAS  Google Scholar 

  58. Shenhara A, Gotman I, Gutmanas EY, Ducheyne P (1999) Surface modification of titanium alloy orthopaedic implants via novel powder immersion reaction assisted coating nitriding method. Mater Sci Eng A 268:40–46. https://doi.org/10.1016/S0921-5093(99)00111-2

    Article  Google Scholar 

  59. Venugopalan R, Weimer JJ, George MA, Lucas LC (2000) The effect of nitrogen diffusion hardening on the surface chemistry and scratch resistance of Ti–6Al–4V alloy. Biomaterials 21:1669–1677. https://doi.org/10.1016/S0142-9612(00)00049-1

    Article  CAS  Google Scholar 

  60. Shenhar A, Gotman I, Radin S, Ducheyne P, Gutmanas EY (2000) Titanium nitride coatings on surgical titanium alloys produced by a Powder Immersion Reaction Assisted Coating method: residual stresses and fretting behavior. Surf Coat Technol 126:210–218. https://doi.org/10.1016/S0257-8972(00)00524-7

    Article  CAS  Google Scholar 

  61. Starosvetsky D, Shenhar A, Gotman I (2001) Corrosion behavior of PIRAC nitrided Ti–6Al–4V surgical alloy. J Mater Sci Med 12:145–150. https://doi.org/10.1023/a:1008922111376

    Article  CAS  Google Scholar 

  62. Hove RP, Sierevelt IN, Royen BJ, Nolte PA (2015) Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature. Biomed Res Int. https://doi.org/10.1155/2015/485975

    Article  Google Scholar 

  63. Kim H, Kim CY, Kim DW, Lee LS, Park JC, Lee SJ, Lee KY (2010) Wear performance of self-mating contact pairs of TiN and TiAlN coatings on orthopedic grade Ti6Al4V. Biomed Mater 5:044108. https://doi.org/10.1088/1748-6041/5/4/044108

    Article  CAS  Google Scholar 

  64. Hanada S, Masahashi N, Jung TK, Miyake M, Sato YK, Kokawa H (2014) Effect of swaging on Young’s modulus of β Ti–33.6Nb–4Sn alloy. J Mech Behav Biomed Mater 32:310–320. https://doi.org/10.1016/j.jmbbm.2013.10.027

    Article  CAS  Google Scholar 

  65. Masahashi N, Mori Y, Tanaka H, Kogure A, Inoue H, Ohmura K, Kodama Y, Nishijima M, Itoi E, Hanada S (2019) Bioactive TiNbSn alloy prepared by anodization in sulfuric acid electrolytes. Mater Sci Eng C 98:753–763. https://doi.org/10.1016/j.msec.2019.01.033

    Article  CAS  Google Scholar 

  66. Archard JF, Hirst W (1956) The wear of metals under unlubricated conditions. Proc R Soc 236:397–410. https://doi.org/10.1098/rspa.1956.0144

    Article  Google Scholar 

  67. Chuang MH, Tsai MH, Wang WR, Lin SJ, Yeh JW (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater 59:6308–6317. https://doi.org/10.1016/j.actamat.2011.06.041

    Article  CAS  Google Scholar 

  68. Tsai MH, Yeh JW (2014) High-Entropy Alloys: A Critical Review. Mater Res Lett 2:107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  69. Prasad N, Kulkarni SD (1980) Relation between microstructure and abrasive wear of plain carbon steels. Wear 63:329–338. https://doi.org/10.1016/0043-1648(80)90059-9

    Article  CAS  Google Scholar 

  70. Akhter R, Zhou Z, Xie A, Munroe P (2021) Enhancing the adhesion strength and wear resistance of nanostructured NiCrN coatings. Appl Surf Sci 541:148533. https://doi.org/10.1016/j.apsusc.2020.148533

    Article  CAS  Google Scholar 

  71. Park Y, Shin K, Song H (2007) Effects of anodizing conditions on bond strength of anodically oxidized film to titanium substrate. Appl Surf Sci 253:6013–6018. https://doi.org/10.1016/j.apsusc.2006.12.112

    Article  CAS  Google Scholar 

  72. Pergament AL, Stefanovich GB (1998) Phase composition of anodic oxide films on transition metals: a thermodynamic approach. Thin Solid Films 322:33–36. https://doi.org/10.1016/S0040-6090(97)00712-8

    Article  CAS  Google Scholar 

  73. Masahashi N, Semboshi S, Ohtsu N, Oku M (2008) Microstructure and superhydrophilicity of anodic TiO2 films on pure titanium. Thin Solid Films 516:7488–7496. https://doi.org/10.1016/j.tsf.2008.03.047

    Article  CAS  Google Scholar 

  74. Masahashi N, Mizukoshi Y, Semboshi S, Ohtsu N (2009) Enhanced photocatalytic activity of rutile TiO2 prepared by anodic oxidation in a high concentration sulfuric acid electrolyte. Appl Catal B 90:255–261. https://doi.org/10.1016/j.apcatb.2009.03.011

    Article  CAS  Google Scholar 

  75. Diamanti MV, Pedeferri MP (2007) Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci 49:939–948. https://doi.org/10.1016/j.corsci.2006.04.002

    Article  CAS  Google Scholar 

  76. Troughton SC, Nominé A, Nominé AV, Henrion G, Clyne TW (2015) Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation. Appl Surf Sci 359:405–411. https://doi.org/10.1016/j.apsusc.2015.10.124

    Article  CAS  Google Scholar 

  77. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotubes arrays prepared by anodic oxidation. J Mater Res 16:3331–3334. https://doi.org/10.1557/JMR.2001.0457

    Article  CAS  Google Scholar 

  78. Pillai P, Raja KS, Misra M (2006) Electrochemical storage of hydrogen in nanotubular TiO2 arrays. J Power Sources 161:524–530. https://doi.org/10.1016/j.jpowsour.2006.03.088

    Article  CAS  Google Scholar 

  79. Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52:1258–1264. https://doi.org/10.1016/j.electacta.2006.07.021

    Article  CAS  Google Scholar 

  80. Dong H, Bell T (2000) Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment. Wear 238:131–137. https://doi.org/10.1016/S0043-1648(99)00359-2

    Article  CAS  Google Scholar 

  81. Oh JM, Lee BG, Cho SW, Lee SW, Choi GS, Lim JW (2011) Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V. Met Mater Int 17:733–736. https://doi.org/10.1007/s12540-011-1006-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Mr. I. Nagano, Ms. M. Tateishi, Ms. Y. Matsuda, Mr. I. Narita, and Ms. K. Ohmura from Tohoku University for sample preparation and characterization, Prof. T. Furuhara and Prof. G. Miyamoto from Tohoku University for nitridation, and Ms. T. Sasaki from Tohoku University for TiN sputtering. Part of this study was supported by a cooperative program of the Cooperative Research and Development Center for Advanced Materials, IMR, Tohoku University. This study was performed using research resources from the Japan Society for the Promotion of Science (No. 20H02458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Masahashi.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatakeyama, M., Masahashi, N., Michiyama, Y. et al. Wear resistance of surface-modified TiNbSn alloy. J Mater Sci 56, 14333–14347 (2021). https://doi.org/10.1007/s10853-021-06213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06213-5

Navigation