Skip to main content
Log in

Wetting of grain boundary triple junctions by intermetallic delta-phase in the Cu–In alloys

  • High-Temperature Capillarity
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper studies the wetting of grain boundary triple junctions (GB TJs) by the second solid phase (intermetallic) δ in the Cu–In alloys. In this system, the portion of grain boundaries in a copper-based solid solution (Cu), which are "wetted" by the second solid phase δ, changes non-monotonically with increasing temperature. At first, the portion of such completely wetted GBs increases from zero to almost 100% when the sample is heated, and then quickly falls back to zero. The condition of complete wetting for the GB TJs (σGB > 1.73 σSS) is less stringent than for the GBs (σGB > 2 σSS). Therefore, if the transition from incomplete to complete wetting occurs with an increase in temperature, then all GB TJs should become completely wetted at a temperature TWTJ, lower than the temperature TWGB, at which all GBs become completely wetted. In this work on the Cu–In system, it was found experimentally for the first time that the wetting of the GB TJs also behaves non-monotonously. The percentage of wetted GB TJs also increases to 100% at first and then falls with increasing temperature. In this case, the portion of wetted GB TJs exceeds the portion of wetted GBs not only when it increases with increasing temperature, but also then, with the subsequent disappearance of fully wetted GBs.

Graphical abstract

Grain boundary triple junctions in (Cu-In) solid solution are “wetted” by the δ intermetallic in broader temperature interval than grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Straumal BB, Zięba P, Gust W (2001) Grain boundary phase transitions and phase diagrams. Intern J Inorgan Mater 3:1113–1115. https://doi.org/10.1016/S1466-6049(01)00108-8

    Article  CAS  Google Scholar 

  2. Rabkin EI, Shvindlerman LS, Straumal BB (1991) Grain boundaries: phase transitions and critical phenomena. Int J Mod Phys B 5:2989–3028. https://doi.org/10.1142/S0217979291001176

    Article  Google Scholar 

  3. Chang LS, Rabkin E, Straumal B, Lejcek P, Hofmann S, Gust W (1997) Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals. Scripta Mater 37:729–735. https://doi.org/10.1016/S1359-6462(97)00171-1

    Article  CAS  Google Scholar 

  4. Noskovich OI, Rabkin EI, Semenov VN, Straumal BB, Shvindlerman LS (1991) Wetting and premelting phase transitions in 38°[100] tilt grain boundaries in (Fe–12at.%Si) Zn alloy in the vicinity of the A2–B2 bulk ordering in Fe–12at.%Si alloy. Acta Metall Mater 39:3091–3098. https://doi.org/10.1016/0956-7151(91)90042-Y

    Article  CAS  Google Scholar 

  5. Straumal BB, Noskovich OI, Semenov VN, Shvindlerman LS, Gust W, Predel B (1992) Premelting transition on 38°<100> tilt grain boundaries in (Fe–10at.%Si)–Zn alloys. Acta Metall Mater 40:795–801. https://doi.org/10.1016/0956-7151(92)90021-6

    Article  CAS  Google Scholar 

  6. Chang LS, Rabkin E, Straumal BB, Hoffmann S, Baretzky B, Gust W (1998) Grain boundary segregation in the Cu–Bi system. Def Diff Forum 156:135–146. https://doi.org/10.4028/www.scientific.net/DDF.156.135

    Article  CAS  Google Scholar 

  7. Chang LS, Straumal BB, Rabkin E, Gust W, Sommer F (1997) The solidus line of the Cu–Bi phase diagram. J Phase Equil 18:128–135. https://doi.org/10.1007/s11669-006-5002-z

    Article  CAS  Google Scholar 

  8. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. https://doi.org/10.1007/s10853-012-6772-9

    Article  CAS  Google Scholar 

  9. Goins PE, Frazier WE III (2020) A model of grain boundary complexion transitions and grain growth in Yttria-doped alumina. Acta Mater 188:79–91. https://doi.org/10.1016/j.actamat.2019.12.061

    Article  CAS  Google Scholar 

  10. Straumal B, Rabkin E, Lojkowski W, Gust W, Shvindlerman LS (1997) Pressure influence on the grain boundary wetting phase transition in Fe–Si alloys. Acta Mater 45:1931–1940. https://doi.org/10.1016/S1359-6454(96)00332-1

    Article  CAS  Google Scholar 

  11. Cahn JW (1977) Critical point wetting. J Chem Phys 66:3667–3672. https://doi.org/10.1063/1.434402

    Article  CAS  Google Scholar 

  12. Ebner C, Saam W (1977) New phase-transition phenomena in thin argon films. Phys Rev Lett 38:1486–1488. https://doi.org/10.1103/PhysRevLett.38.1486

    Article  CAS  Google Scholar 

  13. Kaptay G (2020) A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys. Adv Colloid Interface Sci 283:102212. https://doi.org/10.1016/j.cis.2020.102212

    Article  CAS  Google Scholar 

  14. Mekler C, Kaptay G (2008) Calculation of surface tension and surface phase transition line in binary Ga–Tl system. Mater Sci Eng A 495:65–69. https://doi.org/10.1016/j.msea.2007.10.111

    Article  CAS  Google Scholar 

  15. Kaptay G (2005) A method to calculate equilibrium surface phase transition lines in monotectic systems. Calphad 29:56–67. https://doi.org/10.1016/j.calphad.2005.04.004

    Article  CAS  Google Scholar 

  16. Kaptay G (2016) Modelling equilibrium grain boundary segregation, grain boundary energy and grain boundary segregation transition by the extended Butler equation. J Mater Sci 51:1738–1755. https://doi.org/10.1007/s10853-015-9533-8

    Article  CAS  Google Scholar 

  17. Straumal BB, Baretzky B (2004) Grain boundary phase transitions and their influence on properties of polycrystals. Interf Sci 12:147–155. https://doi.org/10.1023/B:INTJ.0000028645.30358.f5

    Article  Google Scholar 

  18. Straumal BB, Kogtenkova OA, Kolesnikova KI, Straumal AB, Bulatov MF, Nekrasov AN (2014) Reversible “wetting” of grain boundaries by the second solid phase in the Cu–In system. JETP Lett 100:535–539. https://doi.org/10.1134/S002136401420010

    Article  CAS  Google Scholar 

  19. Straumal BB, Gornakova AS, Kogtenkova OA, Protasova SG, Sursaeva VG, Baretzky B (2008) Continuous and discontinuous grain boundary wetting in the Zn–Al system. Phys Rev B 78:054202. https://doi.org/10.1103/PhysRevB.78.054202

    Article  CAS  Google Scholar 

  20. Straumal BB, Gornakova AS, Sursaeva VG, Yashnikov VP (2009) Second-order faceting-roughening of the tilt grain boundary in zinc. Int J Mater Res 100:525–529. https://doi.org/10.3139/146.110058

    Article  CAS  Google Scholar 

  21. Maksimova EL, Shvindlerman LS, Straumal BB (1988) Transformation of Σ17 special tilt boundaries to general boundaries in tin. Acta metall 36:1573–1583. https://doi.org/10.1016/0001-6160(88)90225-8

    Article  CAS  Google Scholar 

  22. Straumal BB, Kogtenkova O, Zięba P (2008) Wetting transition of grain boundary triple junctions. Acta Mater 56:925–933. https://doi.org/10.1016/j.actamat.2007.10.043

    Article  CAS  Google Scholar 

  23. Johnson E, Levinsen MT, Steenstrup S, Prokofjev S, Zhilin V, Dahmen U, Radetic T (2004) One-dimensional random walk of nanosized liquid Pb inclusions on dislocations in Al. Phil Mag 84:2663–2673. https://doi.org/10.1080/14786430410001671412

    Article  CAS  Google Scholar 

  24. Gornakova AS, Straumal BB, Nekrasov AN, Kilmametov A, Afonikova NS (2018) Grain boundary wetting by a second solid phase in Ti–Fe alloys. J Mater Eng Perform 27:4989–4992. https://doi.org/10.1007/s11665-018-3300-3

    Article  CAS  Google Scholar 

  25. Straumal BB, Kogtenkova OA, Straumal AB, Baretzky B (2018) Grain boundary wetting-related phase transformations in Al and Cu-based alloys. Lett Mater 8:364–371. https://doi.org/10.22226/2410-3535-2018-3-364-371

    Article  Google Scholar 

  26. Liu L, Ren D, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials 7:3735–3757. https://doi.org/10.3390/ma7053735

    Article  CAS  Google Scholar 

  27. Chuvil’deev VN, Kopylov VI, Nokhrin AV, Tryaev PV, Tabachkova NY, Chegurov MK, Kozlova NA, Mikhaylov AS et al (2019) Effect of severe plastic deformation realized by rotary swaging on the mechanical properties and corrosion resistance of near-α-titanium alloy Ti-2.5Al-2.6Zr. J Alloys Compd 785:1233–1244. https://doi.org/10.1016/j.jallcom.2019.01.268

    Article  CAS  Google Scholar 

  28. Ahangarkani M, Zangeneh-Madar K, Borji S, Valefi Z (2017) The effect of post-sintering annealing on the erosion resistance of infiltrated W-Cu composites. Mater Lett 209:566–570. https://doi.org/10.1016/j.matlet.2017.08.057

    Article  CAS  Google Scholar 

  29. Tian JY, Xu G, Zhou MX, Hu HJ, Wan XL (2017) The effecTJ of Cr and Al addition on transformation and properties in low-carbon bainitic steels. Metals 7:40. https://doi.org/10.3390/met7020040

    Article  CAS  Google Scholar 

  30. Turner RP, Panwisawasa C, Lu Y, Dhiman I, Basoalto HC, Brooks JW (2018) Neutron tomography methods applied to a nickel-based superalloy additive manufacture build. Mater Lett 230:109–112. https://doi.org/10.1016/j.matlet.2018.07.112

    Article  CAS  Google Scholar 

  31. Jodi DE, Park J, Park N (2019) Precipitate behavior in nitrogen-containing CoCrNi medium-entropy alloys. Mater Charact 157:109888. https://doi.org/10.1016/j.matchar.2019.109888

    Article  CAS  Google Scholar 

  32. Krylova TA, Chumakov YuA (2020) Fabrication of Cr-Ti-C composite coating by non-vacuum electron beam cladding. Mater Lett 274:128022. https://doi.org/10.1016/j.matlet.2020.128022

    Article  CAS  Google Scholar 

  33. Yao P, Li XY, Liang XB, Yu B, Jin FY, Li Y (2017) A study on interfacial phase evolution during Cu/Sn/Cu soldering with a micro interconnected height. Mater Charact 131:49–63. https://doi.org/10.1016/j.matchar.2017.06.033

    Article  CAS  Google Scholar 

  34. McLean D (1957) Grain boundaries in metals. Clarendon Press, Oxford, p 95

    Google Scholar 

  35. Smith CB (1948) Introduction to grains, phases, and interfaces—an interpretation of microstructure. Trans AIMME 175:15–51. https://doi.org/10.1007/s11661-010-0215-5

    Article  CAS  Google Scholar 

  36. Straumal B, Gust W, Molodov D (1995) Wetting transition on the grain boundaries in Al contacting with Sn-rich melt. Interface Sci 3:127–132. https://doi.org/10.1007/BF00207014

    Article  CAS  Google Scholar 

  37. Straumal BB, Gust W, Watanabe T (1999) Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn–Sn phase diagram. Mater Sci Forum 294:411–414. https://doi.org/10.4028/www.scientific.net/MSF.294-296.411

    Article  Google Scholar 

  38. Protasova SG, Kogtenkova OA, Straumal BB, Zięba P, Baretzky B (2011) Inversed solid-phase grain boundary wetting in the Al–Zn system. J Mater Sci 46:4349–4353. https://doi.org/10.1007/s10853-011-5322-1

    Article  CAS  Google Scholar 

  39. Straumal BB, Kogtenkova OA, Straumal AB, Kuchyeyev YuO, Baretzky B (2010) Contact angles by the solid-phase grain boundary wetting in the Co–Cu system. J Mater Sci 45:4271–4275. https://doi.org/10.1007/s10853-010-4377-8

    Article  CAS  Google Scholar 

  40. Massalski TB et al (eds) (1993) Binary alloy phase diagrams . ASM International, Materials Park

    Google Scholar 

  41. Straumal AB, Bokstein BS, Petelin AL, Straumal BB, Baretzky B, Rodin AO, Nekrasov AN (2012) Apparently complete grain boundary wetting in Cu–In alloys. J Mater Sci 47:8336–8343. https://doi.org/10.1007/s10853-012-6773-8

    Article  CAS  Google Scholar 

  42. Straumal AB, Yardley VA, Straumal BB, Rodin AO (2015) Influence of the grain boundary character on the temperature of transition to complete wetting in Cu–In system. J Mater Sci 50:4762–4771. https://doi.org/10.1007/s10853-015-9025-x

    Article  CAS  Google Scholar 

  43. Kaptay G, Barczy T (2005) On the asymmetrical dependence of the threshold pressure of infiltration on the wettability of the porous solid by the infiltrating liquid. J Mater Sci 40:2531–2535. https://doi.org/10.1007/s10853-005-1987-7

    Article  CAS  Google Scholar 

  44. Weltsch Z, Lovas A, Takács J, Cziráki Á, Toth A, Kaptay G (2013) Measurement and modelling of the wettability of graphite by a silver-tin (Ag-Sn) liquid alloy. Appl Surf Sci 268:52–60. https://doi.org/10.1016/j.apsusc.2012.11.150

    Article  CAS  Google Scholar 

  45. Baumli P, Sytchev J, Kaptay G (2010) Perfect wettability of carbon by liquid aluminum achieved by a multifunctional flux. J Mater Sci 45:5177–5190. https://doi.org/10.1007/s10853-010-4555-8

    Article  CAS  Google Scholar 

  46. Rohrer GS (2011) Grain boundary energy anisotropy: a review. J Mater Sci 46:5881–5895. https://doi.org/10.1007/s10853-011-5677-3

    Article  CAS  Google Scholar 

  47. Kuzmina M, Herbig M, Ponge D, Sandlöbes S, Raabe D (2015) Linear complexions: confined chemical and structural states at dislocations. Science 349:1080–1083. https://doi.org/10.1126/science.aab2633

    Article  CAS  Google Scholar 

  48. Mazilkin AA, Straumal BB, Kilmametov AR, Boll T, Baretzky B, Kogtenkova OA, Korneva A, Zięba P (2019) Competition for impurity atoms between defects and solid solution during high pressure torsion. Scripta Mater 173:46–50. https://doi.org/10.1016/j.scriptamat.2019.08.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the state task of ISSP RAS, CSC RAS and IEM RAS. The SEM measurements were partially performed using shared experimental facilities supported by IGIC RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Straumal.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straumal, B., Kogtenkova, O., Bulatov, M. et al. Wetting of grain boundary triple junctions by intermetallic delta-phase in the Cu–In alloys. J Mater Sci 56, 7840–7848 (2021). https://doi.org/10.1007/s10853-020-05674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05674-4

Navigation