Skip to main content
Log in

Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The solvothermal polyol reaction is one of the most common methods known in the literature to synthesize magnetite nanoparticles and especially clusters. Despite this, its reaction mechanism is still not definitely determined. In the course of this work, a polyol reaction with sodium acrylate as stabilizer was used as a representative example. By using analytic tools such as TEM/SEM, XRPD, FTIR and Raman spectroscopy, XPS and magnetization measurements, the influence of several reaction parameters was examined, some of them for the first time for this type of reaction. The results detailed here have consequences for reproducibility as well as scale-up for this reaction. Using NMR techniques, the surface coating of the clusters was also analyzed. It was found that the coating consists of a variety of molecules, not just the stabilizer added in the reaction. By varying the temperature, it was possible to produce maghemite clusters instead of magnetite ones. Finally, on the basis of detailed analysis of intermediates, a possible reaction mechanism was formulated and used to explain several of the earlier findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2

Similar content being viewed by others

References

  1. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  Google Scholar 

  2. Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 38(12):R199–R222

    Article  CAS  Google Scholar 

  3. Gupta N, Pant P, Gupta C, Goel P, Jain A, Anand S, Pundir A (2017) Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review. Res Innov Mater 22:434–450. https://doi.org/10.1080/14328917.2017.1334846

    Article  CAS  Google Scholar 

  4. Mrowczynski R, Nan A, Liebscher J (2014) Magnetic nanoparticle-supported organocatalysts—an efficient way of recycling and reuse. RSC Adv 4(12):5927–5952

    Article  CAS  Google Scholar 

  5. Lee H, Shin TH, Cheon J, Weissleder R (2015) Recent developments in magnetic diagnostic systems. Chem Rev 115(19):10690–10724

    Article  CAS  Google Scholar 

  6. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115(19):10637–10689

    Article  CAS  Google Scholar 

  7. Lu ZD, Yin YD (2012) Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 41(21):6874–6887

    Article  CAS  Google Scholar 

  8. Guo J, Yang WL, Wang CC (2013) Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater 25(37):5196–5214

    Article  CAS  Google Scholar 

  9. Boles MA, Engel M, Talapin DV (2016) Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem Rev 116(18):11220–11289

    Article  CAS  Google Scholar 

  10. Zhou ZJ, Tian R, Wang ZY, Yang Z, Liu YJ, Liu G, Wang RF, Gao JH, Song JB, Nie LM, Chen XY (2017) Artificial local magnetic field inhomogeneity enhances T-2 relaxivity. Nat Commun 8:15468

    Article  CAS  Google Scholar 

  11. Kostopoulou A, Lappas A (2015) Colloidal magnetic nanocrystal clusters: variable length-scale interaction mechanisms, synergetic functionalities and technological advantages. Nanotech Rev 4(6):595–624

    Article  CAS  Google Scholar 

  12. Fiévet F, Brayner R (2013) The Polyol Process. In: Brayner R, Fiévet F, Coradin T (eds) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, London, pp 1–25

    Google Scholar 

  13. Cai W, Wan JQ (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370

    Article  CAS  Google Scholar 

  14. Ge JP, Hu YX, Biasini M, Beyermann WP, Yin YD (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46(23):4342–4345

    Article  CAS  Google Scholar 

  15. Wang LY, Bao J, Wang L, Zhang F, Li YD (2006) One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J 12(24):6341–6347

    Article  CAS  Google Scholar 

  16. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44(18):2782–2785

    Article  CAS  Google Scholar 

  17. Xuan SH, Wang YXJ, Yu JC, Leung KCF (2009) Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater 21(21):5079–5087

    Article  CAS  Google Scholar 

  18. Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48(32):5875–5879

    Article  CAS  Google Scholar 

  19. Petran A, Radu T, Nan A, Olteanu D, Filip A, Clichici S, Baldea I, Suciu M, Turcu R (2016) Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters. J Nanopart Res 19(1):10

    Article  Google Scholar 

  20. Lin MH, Huang HL, Liu ZT, Liu YJ, Ge JB, Fang YP (2013) Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir 29(49):15433–15441

    Article  CAS  Google Scholar 

  21. Zheng J, Liu ZQ, Zhao XS, Liu M, Liu X, Chu W (2012) One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes. Nanotechnology 23(16):165601

    Article  CAS  Google Scholar 

  22. Wang DB, Song CX, Zhao YH, Yang ML (2008) Synthesis and characterization of monodisperse iron oxides microspheres. J Phys Chem C 112(33):12710–12715

    Article  CAS  Google Scholar 

  23. Xuan SH, Wang F, Wang YXJ, Yu JC, Leung KCF (2010) Facile synthesis of size-controllable monodispersed ferrite nanospheres. J Mater Chem 20(24):5086–5094

    Article  CAS  Google Scholar 

  24. Gao JN, Ran XZ, Shi CM, Cheng HM, Cheng TM, Su YP (2013) One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale 5(15):7026–7033

    Article  CAS  Google Scholar 

  25. Xu S, Sun CY, Guo J, Xu K, Wang CC (2012) Biopolymer-directed synthesis of high-surface-area magnetite colloidal nanocrystal clusters for dual drug delivery in prostate cancer. J Mater Chem 22(36):19067–19075

    Article  CAS  Google Scholar 

  26. Bai W, Meng XJ, Zhu X, Jing CB, Gao C, Chu JH (2009) Shape-tuned synthesis of dispersed magnetite submicro particles with good magnetic properties. Phys E 42(2):141–145

    Article  CAS  Google Scholar 

  27. Ai LH, Zhang CY, Chen ZL (2011) Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater 192(3):1515–1524

    Article  CAS  Google Scholar 

  28. Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4(6):550–562

    Article  CAS  Google Scholar 

  29. Tan H, Huang K, Bao YX, Li Y, Zhong JX (2017) Rationally designed layer-by-layer structure of Fe3O4 nanospheres@MWCNTs/graphene as electrode for lithium ion batteries with enhanced electrochemical performance. J Alloys Compd 699:812–817

    Article  CAS  Google Scholar 

  30. Zhang YL, Li HY, Chen M, Fang X, Pang PF, Wang HB, Wu Z, Yang WR (2017) Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy. Sens Actuators B 249:431–438

    Article  CAS  Google Scholar 

  31. Jiao SH, Xu M, Zhang YW, Pang GS, Feng SH (2010) Influence of polyols on the formation of iron oxide nanoparticles in solvothermal system. J Nanosci Nanotech 10(12):8405–8407

    Article  CAS  Google Scholar 

  32. Jean M, Nachbaur V, Le Breton JM (2012) Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe3+ concentration. J Alloys Compd 513:425–429

    Article  CAS  Google Scholar 

  33. Cao SW, Zhu YJ, Chang J (2008) Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol-water system. New J Chem 32(9):1526–1530

    Article  CAS  Google Scholar 

  34. Zhu MY, Diao GW (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115(39):18923–18934

    Article  CAS  Google Scholar 

  35. Zhu LP, Xiao HM, Zhang WD, Yang G, Fu SY (2008) One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route. Cryst Growth Des 8(3):957–963

    Article  CAS  Google Scholar 

  36. Liu SH, Xing RM, Lu F, Rana RK, Zhu JJ (2009) One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. J Phys Chem C 113(50):21042–21047

    Article  CAS  Google Scholar 

  37. Otero-Lorenzo R, Ramos-Docarripo MA, Rodriguez-Gonzalez B, Comesana-Hermo M, Salgueirino V (2017) Solvothermal clustering of magnetic spinel ferrite nanocrystals: a Raman perspective. Chem Mater 29(20):8729–8736

    Article  CAS  Google Scholar 

  38. Fan T, Pan DK, Zhang H (2011) Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Ind Eng Chem Res 50(15):9009–9018

    Article  CAS  Google Scholar 

  39. Kozakova Z, Kuritka I, Kazantseva NE, Babayan V, Pastorek M, Machovsky M, Bazant P, Saha P (2015) The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties. Dalton Trans 44(48):21099–21108

    Article  CAS  Google Scholar 

  40. Grabs IM, Bradtmoller C, Menzel D, Garnweitner G (2012) Formation mechanisms of iron oxide nanopartides in different nonaqueous media. Cryst Growth Des 12(3):1469–1475

    Article  CAS  Google Scholar 

  41. Choi KH, Chae WS, Kim EM, Jun JH, Jung JH, Kim YR, Jung JS (2011) A facile fabrication of Fe3O4/ZnO core-shell submicron particles with controlled size. IEEE Trans Magn 47(10):3369–3372

    Article  CAS  Google Scholar 

  42. Zhuang L, Zhao YX, Zhong HX, Liang JH, Zhou JH, Shen H (2015) Hydrophilic magnetochromatic nanoparticles with controllable sizes and super-high magnetization for visualization of magnetic field intensity. Sci Rep 5:17063

    Article  CAS  Google Scholar 

  43. Wang WT, Tang BT, Ju BZ, Zhang SF (2015) Size-controlled synthesis of water-dispersible superparamagnetic Fe3O4 nanoclusters and their magnetic responsiveness. RSC Adv. 5(92):75292–75299

    Article  CAS  Google Scholar 

  44. Liang J, Ma HR, Luo W, Wang SL (2013) Synthesis of magnetite submicrospheres with tunable size and superparamagnetism by a facile polyol process. Mater Chem Phys 139(2–3):383–388

    Article  CAS  Google Scholar 

  45. Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Goettingen. Math Phys Kl 2:98–100

    Google Scholar 

  46. Mykhaylyk O, Antequera YS, Vlaskou D, Plank C (2007) Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2(10):2391–2411

    Article  CAS  Google Scholar 

  47. Kiss LB, Soderlund J, Niklasson GA, Granqvist CG (1999) The real origin of lognormal size distributions of nanoparticles in vapor growth processes. Nanostruct Mater 12(1–4):327–332

    Article  Google Scholar 

  48. Wang C, Xu FJ, Gu HC (2013) Tuning the size of carboxyl-functionalized Fe3O4 microspheres by changing reactant mixing process. Mater Lett 109:283–286

    Article  CAS  Google Scholar 

  49. Carvalho BD, Corbi FCA, Sigoli FA, Mazali IO (2016) Precursor dissolution temperature as a size-controller in Fe3O4 submicrospheres syntheses and their effect in the catalytic degradation of Rhodamine B. RSC Adv 6(45):38617–38623

    Article  CAS  Google Scholar 

  50. Zhu H, Hou C, Li YJ, Zhao GH, Liu X, Hou K, Li YF (2013) One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization. Chem Asian J 8(7):1447–1454

    Article  CAS  Google Scholar 

  51. Kostopoulou A, Tsiaoussis I, Lappas A (2011) Magnetic iron oxide nanoclusters with tunable optical response. Photon Nanostruct Fundam Appl 9(2):201–206

    Article  Google Scholar 

  52. Liu Y, Cui TT, Li YN, Zhao YT, Ye YC, Wu WH, Tong GX (2016) Effects of crystal size and sphere diameter on static magnetic and electromagnetic properties of monodisperse Fe3O4 microspheres. Mater Chem Phys 173:152–160

    Article  CAS  Google Scholar 

  53. Wang WT, Tang BT, Wu SL, Gao ZM, Ju BZ, Teng XX, Zhang SF (2017) Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe3O4 nanoclusters with tunable size. J Magn Magn Mater 423:111–117

    Article  CAS  Google Scholar 

  54. Xu FJ, Cheng CM, Chen DX, Gu HC (2012) Magnetite nanocrystal clusters with ultra-high sensitivity in magnetic resonance imaging. Chem Phys Chem 13(1):336–341

    Article  CAS  Google Scholar 

  55. Zhu YF, Zhao WR, Chen HR, Shi JL (2007) A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property. J Phys Chem C 111(14):5281–5285

    Article  CAS  Google Scholar 

  56. Uribe Madrid SI, Pal U, Sánchez-De Jesús F (2014) Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process Adv. Nano Res 2(4):187–198

    Article  Google Scholar 

  57. Hong RY, Pan TT, Han YP, Li HZ, Ding J, Han SJ (2007) Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids. J Magn Magn Mater 310(1):37–47

    Article  CAS  Google Scholar 

  58. Morais PC, Goncalves GRR, Bakuzis AF, Neto KS, Pelegrini F (2001) Experimental evidence of dimer disruption in ionic ferrofluid: a ferromagnetic resonance investigation. J Magn Magn Mater 225(1–2):84–88

    Article  CAS  Google Scholar 

  59. Zhang DP, Lu CH, Ni YR, Xu ZZ, Zhang WB (2013) Effect of water on size-controllable synthesis of mesoporous Fe3O4 microspheres and their applications in waste water treatment. Cryst Eng Commun 15(23):4755–4764

    Article  CAS  Google Scholar 

  60. Tong GX, Liu Y, Wu T, Tong CL, Du FF (2015) H2O-steered size/phase evolution and magnetic properties of large-scale, monodisperse FexOy nanomaterials. J Mater Chem C 3(21):5506–5515

    Article  CAS  Google Scholar 

  61. Hemery G, Keyes AC, Garaio E, Rodrigo I, Garcia JA, La FP, Garanger E, Sandre O (2017) Tuning sizes, morphologies, and magnetic properties of monocore versus multicore iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem 56(14):8232–8243

    Article  CAS  Google Scholar 

  62. Wang T, Zhang LY, Wang HY, Yang WC, Fu YC, Zhou WL, Yu WT, Xiang KS, Su Z, Dai S, Chai LY (2013) Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly(diallyldimethylammonium chloride) and their application in arsenic removal. ACS Appl Mater Interfaces 5(23):12449–12459

    Article  CAS  Google Scholar 

  63. Huang ZZ, Wu KL, Yu QH, Wang YY, Xing JY, Xia TL (2016) Facile synthesis of size tunable Fe3O4 nanoparticles in bisolvent system. Chem Phys Lett 664:219–225

    Article  CAS  Google Scholar 

  64. Wang Y, Zheng YQ, Huang CZ, Xia YN (2013) Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J Am Chem Soc 135(5):1941–1951

    Article  CAS  Google Scholar 

  65. Cheng CM, Xu FJ, Gu HC (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35(5):1072–1079

    Article  CAS  Google Scholar 

  66. Qiu XL, Zhou Y, Jin XY, Qi AD, Yang YW (2015) One-pot solvothermal synthesis of biocompatible magnetic nanoparticles mediated by cucurbit[n]urils. J Mater Chem C 3(15):3517–3521

    Article  CAS  Google Scholar 

  67. Cornell RM, Schwertmann U (2004) Characterization. In: Cornell RM, Schwertmann U (eds) The iron oxides. Wiley, Hoboken, pp 139–183

    Google Scholar 

  68. Wertheim GK, DiCenzo SB, Buchanan DN (1986) Noble- and transition-metal clusters: the d bands of silver and palladium. Phys Rev B Condens Matter 33(8):5384–5390

    Article  CAS  Google Scholar 

  69. Pászti Z, Petö G, Horváth ZE, Karacs A, Guczi L (1998) Electronic structure of Ag nanoparticles deposited on Si(1 0 0). Solid State Commun 107(7):329–333

    Article  Google Scholar 

  70. Cheshnovsky O, Taylor KJ, Conceicao J, Smalley RE (1990) Ultraviolet photoelectron spectra of mass-selected copper clusters: evolution of the 3d band. Phys Rev Lett 64(15):1785–1788

    Article  CAS  Google Scholar 

  71. Aruna I, Mehta BR, Malhotra LK, Shivaprasad SM (2008) Size dependence of core and valence binding energies in Pd nanoparticles: interplay of quantum confinement and coordination reduction. J Appl Phys 104(6):064308

    Article  Google Scholar 

  72. Gerber O, Pichon BP, Ulhaq C, Greneche JM, Lefevre C, Florea I, Ersen O, Begin D, Lemonnier S, Barraud E, Begin-Colin S (2015) Low oxidation state and enhanced magnetic properties induced by raspberry shaped nanostructures of iron oxide. J Phys Chem C 119(43):24665–24673

    Article  CAS  Google Scholar 

  73. Chen L, Li J (2013) A study of γ-Fe2O3 nanoparticles modified using ZnCl2 during synthesis. Adv Mater Phys Chem 3(1):31

    Article  Google Scholar 

  74. Hongjun L, Zang Z, Tang X (2014) Synthesis mechanism and optical properties of well nanoflower-shaped ZnO fabricated by a facile method. Opt Mater Express 4(9):1762–1769

    Article  Google Scholar 

  75. Spectral Database for Organic Compounds (SDBS), IR spectrum, SDBS No.: 2185, RN 107-21-1, www.sdbs.db.aist.go.jp/sdbs/. Accessed 26 Nov 2017

  76. Spectral Database for Organic Compounds (SDBS), IR spectrum, SDBS No.: 12693, RN 546-89-4, www.sdbs.db.aist.go.jp/sdbs/. Accessed 26 Nov 2017

  77. Gerber O, Pichon BP, Ihiawakrim D, Florea I, Moldovan S, Ersen O, Begin D, Greneche JM, Lemonnier S, Barraud E, Begin-Colin S (2017) Synthesis engineering of iron oxide raspberry-shaped nanostructures. Nanoscale 9(1):305–313

    Article  CAS  Google Scholar 

  78. Tronc E, Jolivet JP, Lefebvre J, Massart R (1984) Ion adsorption and electron-transfer in spinel-like iron-oxide colloids. J Chem Soc Faraday Trans 80:2619–2629

    Article  CAS  Google Scholar 

  79. Jolivet JP, Tronc E (1988) Interfacial electron-transfer in colloidal spinel iron-oxide-conversion of Fe3o4-Gamma-Fe2O3 in aqueous-medium. J Colloid Interface Sci 125(2):688–701

    Article  CAS  Google Scholar 

  80. Tronc E, Jolivet JP, Belleville P, Livage J (1989) Redox phenomena in spinel iron-oxide colloids induced by adsorption. Hyperfine Interact 46(1–4):637–643

    Google Scholar 

  81. Ahrenstorf K, Heller H, Kornowski A, Broekaert JAC, Weller H (2008) Nucleation and Growth Mechanism of NixPt1−x Nanoparticles. Adv Funct Mater 18(23):3850–3856

    Article  CAS  Google Scholar 

  82. Ding T, Yao L, Liu CC (2016) Kinetically-controlled synthesis of ultra-small silica nanoparticles and ultra-thin coatings. Nanoscale 8(8):4623–4627

    Article  CAS  Google Scholar 

  83. Guo Q, Zhu PL, Li G, Huang L, Zhang Y, Lu DD, Sun R, Wong CP (2015) One-pot synthesis of bimodal silica nanospheres and their effects on the rheological and thermal-mechanical properties of silica-epoxy composites. RSC Adv 5(62):50073–50081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Sorina Ciupe for IR measurements, Dr. Lucian Barbu-Tudoran and Septimiu Tripon for some TEM measurements, Dr. Björn Kobin (Humboldt-Universität Berlin) for TGA measurements, Dr. Andrea Zehl (Humboldt-Universität Berlin) for elemental analysis and Dr. Cristian Leostean for XPS and magnetization measurements.

Funding

This work was supported by Grants of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI Project No. PN-III-P2-2.1-PED-2016-0168 and Project No. PN-III-P1-1.2-PCCDI-2017-0062, Contract No. 58, within PNCDI III. It was partially supported through the infrastructure obtained in the project Research Center and Advanced Technologies for Alternative Energies—CETATEA—623/11.03.2014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Bunge or Rodica Turcu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunge, A., Porav, A.S., Borodi, G. et al. Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method. J Mater Sci 54, 2853–2875 (2019). https://doi.org/10.1007/s10853-018-3030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3030-9

Keywords

Navigation