Skip to main content
Log in

Red-to-black electrochromism of 4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-embedded conjugated polymers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of 4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-based conjugated polymers with 3,4-bis(dodecyloxy)thiophene, 3,3-bis((dodecyloxy)methyl)-3,4-dihydro-2H-thieno[3,4-b] [1, 4] dioxepine and 3,4-ethylenedioxythiophene as co-monomers were synthesized via Stille coupling reaction in more than 50 % yields. These polymers possess relatively high number-average molecular weights of 14,900–21,000 g mol−1 and exhibit good solubility in common organic solvents. The physical and electrochemical properties of these polymers were studied, and the polymers showed optical bandgap between 2.04 and 2.08 eV. Electrochromic devices showed a rare and reversible colour change between dark red at neutral state and black at oxidized state with optical switching contrast ratios of up to 50 % at λ max and 90 % at 1500 nm in the visible and NIR regions, respectively.

Graphical abstract

4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-based conjugated polymers showing rare and reversible colour change between dark red at neutral state and black at oxidized state were synthesized via Stille coupling. These polymers possess high optical contrast in both the visible and NIR regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923

    Article  Google Scholar 

  2. Duan CH, Huang F, Cao Y (2012) Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J Mater Chem 22(21):10416–10434

    Article  Google Scholar 

  3. Guenes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338

    Article  Google Scholar 

  4. Boudreault P-LT, Najari A, Leclerc M (2011) Processable low-bandgap polymers for photovoltaic applications. Chem Mater 23(3):456–469

    Article  Google Scholar 

  5. Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA (2004) Electron transport materials for organic light-emitting diodes. Chem Mater 16(23):4556–4573

    Article  Google Scholar 

  6. Bernius MT, Inbasekaran M, O’Brien J, Wu WS (2000) Progress with light-emitting polymers. Adv Mater 12(23):1737–1750

    Article  Google Scholar 

  7. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22(5):572–582

    Article  Google Scholar 

  8. Lu K, Liu Y (2010) Polythiophenes: important conjugated semiconducting polymers for organic field-effect transistors. Curr Org Chem 14(18):2017–2033

    Article  Google Scholar 

  9. Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB (2012) Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112(4):2208–2267

    Article  Google Scholar 

  10. Mei C-Y, Liang L, Zhao F-G, Wang J-T, Yu L-F, Li Y-X, Li W-S (2013) A family of donor-acceptor photovoltaic polymers with fused 4,7-dithienyl-2,1,3-benzothiadiazole units: effect of structural fusion and side chains. Macromolecules 46(19):7920–7931

    Article  Google Scholar 

  11. Biniek L, Schroeder BC, Nielsen CB, McCulloch I (2012) Recent advances in high mobility donor-acceptor semiconducting polymers. J Mater Chem 22(30):14803–14813

    Article  Google Scholar 

  12. Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110(1):268–320

    Article  Google Scholar 

  13. Balan A, Baran D, Toppare L (2011) Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polym Chem 2(5):1029–1043

    Article  Google Scholar 

  14. Sonmez G (2005) Polymeric electrochromics. Chem Commun 42:5251–5259

    Article  Google Scholar 

  15. Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24(30):4071–4096

    Article  Google Scholar 

  16. Rosseinsky DR, Mortimer RJ (2001) Electrochromic systems and the prospects for devices. Adv Mater 13(11):783–793

    Article  Google Scholar 

  17. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110(1):3–24

    Article  Google Scholar 

  18. Argun AA, Aubert P-H, Thompson BC, Schwendeman I, Gaupp CL, Hwang J, Pinto NJ, Tanner DB, MacDiarmid AG, Reynolds JR (2004) Multicolored electrochromism in polymers: structures and devices. Chem Mater 16(23):4401–4412

    Article  Google Scholar 

  19. Krebs FC (2008) Electrochromic displays: the new black. Nat Mater 7(10):766–767

    Article  Google Scholar 

  20. Yang Y, Li G (2015) Progress in high-efficient solution process organic photovoltaic devices. Springer, Berlin

    Book  Google Scholar 

  21. Christoph B, Ullrich S, Vladimir D (2014) Organic photovoltaics: materials, device physics, and manufacturing technologies, 2nd Edn. Wiley-VCH, Hoboken

  22. Liu X, Li Q, Li Y, Gong X, Su SJ, Cao Y (2014) Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. J Mater Chem A 2(11):4004–4013

    Article  Google Scholar 

  23. Dang D, Chen W, Himmelberger S, Tao Q, Lundin A, Yang R, Zhu W, Salleo A, Müller C, Wang E (2014) Enhanced photovoltaic performance of indacenodithiophene-quinoxaline copolymers by side-chain modulation. Adv Energy Mater 4(15):1400680

    Article  Google Scholar 

  24. Chen K-S, Zhang Y, Yip H-L, Sun Y, Davies JA, Ting C, Chen C-P, Jen AKY (2011) Highly efficient indacenodithiophene-based polymeric solar cells in conventional and inverted device configurations. Org Electron 12(5):794–801

    Article  Google Scholar 

  25. Sun Y, Chien S-C, Yip H-L, Chen K-S, Zhang Y, Davies JA, Chen F-C, Lin B, Jen AKY (2012) Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. J Mater Chem 22(12):5587–5595

    Article  Google Scholar 

  26. Yong W, Zhang M, Xin X, Li Z, Wu Y, Guo X, Yang Z, Hou J (2013) Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. J Mater Chem A 1(45):14214–14220

    Article  Google Scholar 

  27. Zhang Y, Zou J, Yip H-L, Chen K-S, Zeigler DF, Sun Y, Jen AKY (2011) Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem Mater 23(9):2289–2291

    Article  Google Scholar 

  28. Bronstein H, Frost JM, Hadipour A, Kim Y, Nielsen CB, Ashraf RS, Rand BP, Watkins S, McCulloch I (2013) Effect of fluorination on the properties of a donor-acceptor copolymer for use in photovoltaic cells and transistors. Chem Mater 25(3):277–285

    Article  Google Scholar 

  29. Bronstein H, Leem DS, Hamilton R, Woebkenberg P, King S, Zhang W, Ashraf RS, Heeney M, Anthopoulos TD, de Mello J, McCulloch I (2011) Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 44(17):6649–6652

    Article  Google Scholar 

  30. Sun Y, Chien S-C, Yip H-L, Zhang Y, Chen K-S, Zeigler DF, Chen F-C, Lin B, Jen AKY (2011) Chemically doped and cross-linked hole-transporting materials as an efficient anode buffer layer for polymer solar cells. Chem Mater 23(22):5006–5015

    Article  Google Scholar 

  31. Chen C-P, Chan S-H, Chao T-C, Ting C, Ko B-T (2008) Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. J Am Chem Soc 130(38):12828–12833

    Article  Google Scholar 

  32. Wang M, Hu X, Liu L, Duan C, Liu P, Ying L, Huang F, Cao Y (2013) Design and synthesis of copolymers of indacenodithiophene and naphtho 1,2-c:5,6-c bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules 46(10):3950–3958

    Article  Google Scholar 

  33. Zhang Y, Zou J, Yip H-L, Chen K-S, Davies JA, Sun Y, Jen AKY (2011) Synthesis, characterization, charge transport, and photovoltaic properties of dithienobenzoquinoxaline- and dithienobenzopyridopyrazine-based conjugated polymers. Macromolecules 44(12):4752–4758

    Article  Google Scholar 

  34. Chan S-H, Chen C-P, Chao T-C, Ting C, Lin C-S, Ko B-T (2008) Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with thiophene-phenylene-thiophene (TPT) as coplanar units. Macromolecules 41(15):5519–5526

    Article  Google Scholar 

  35. Zhang W, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, Kirkpatrick J, Ashraf S, Anthopoulos T, Heeney M, McCulloch I (2010) Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc 132(33):11437–11439

    Article  Google Scholar 

  36. Neo WT, Ye Q, Lin TT, Chua SJ, Xu J (2015) 4,9-Dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-embedded electrochromic conjugated polymers with high coloration efficiency and fast coloration time. Sol Energy Mater Sol Cells 136:92–99

    Article  Google Scholar 

  37. Gunbas G, Toppare L (2012) Electrochromic conjugated polyheterocycles and derivatives-highlights from the last decade towards realization of long lived aspirations. Chem Commun 48(8):1083–1101

    Article  Google Scholar 

  38. Gaupp CL, Zong K, Schottland P, Thompson BC, Thomas CA, Reynolds JR (2000) Poly(3,4-ethylenedioxypyrrole): organic electrochemistry of a highly stable electrochromic polymer. Macromolecules 33(4):1132–1133

    Article  Google Scholar 

  39. Gaupp CL, Welsh DM, Reynolds JR (2002) Poly(ProDOT-Et2): a high-contrast, high-coloration efficiency electrochromic polymer. Macromol Rapid Commun 23(15):885–889

    Article  Google Scholar 

  40. Giglioti M, Trivinho-Strixino F, Matsushima JT, Bulhões LOS, Pereira EC (2004) Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films. Sol Energy Mater Sol Cells 82(3):413–420

    Article  Google Scholar 

  41. Shin H, Kim Y, Bhuvana T, Lee J, Yang X, Park C, Kim E (2012) Color combination of conductive polymers for black electrochromism. ACS Appl Mater Interf 4(1):185–191

    Article  Google Scholar 

  42. Ah CS, Song J, Cho SM, Kim T-Y, Kim HN, Oh JY, Chu HY, Ryu H (2015) Double-layered black electrochromic device with a single electrode and long-term bistability. Bull Korean Chem Soc 36(2):548–552

    Google Scholar 

  43. Neo WT, Cho CM, Song J, Chin JM, Wang X, He C, Chan HSO, Xu J (2013) Solution-processable multicolored dithienothiophene-based conjugated polymers for electrochromic applications. Eur Poly J 49(9):2446–2456

    Article  Google Scholar 

  44. Aubert P-H, Knipper M, Groenendaal L, Lutsen L, Manca J, Vanderzande D (2004) Copolymers of 3,4-Ethylenedioxythiophene and of pyridine alternated with fluorene or phenylene units: synthesis, optical properties, and devices. Macromolecules 37(11):4087–4098

    Article  Google Scholar 

  45. Sun Y, Chien S-C, Yip H-L, Zhang Y, Chen K-S, Zeigler DF, Chen F-C, Lin B, Jen AKY (2011) High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. J Mater Chem 21(35):13247–13255

    Article  Google Scholar 

  46. Beaujuge PM, Ellinger S, Reynolds JR (2008) Spray processable green to highly transmissive electrochromics via chemically polymerizable donor-acceptor heterocyclic pentamers. Adv Mater 20(14):2772–2776

    Article  Google Scholar 

  47. Ye Q, Chang J, Huang KW, Shi X, Wu J, Chi C (2013) Cyanated diazatetracene diimides with ultrahigh electron affinity for n-channel field effect transistors. Organ Lett 15(6):1194–1197

    Article  Google Scholar 

  48. Ye Q, Neo WT, Lin T, Song J, Yan H, Zhou H, Shah KW, Chua SJ, Xu J (2015) Pyrrolophthalazine dione (PPD)-based donor-acceptor polymers as high performance electrochromic materials. Polym Chem 6:1487–1494

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Agency for Science, Technology and Research (A*STAR) and Minister of National Development (MND) for financial support (Grant No.: 1321760011). The TD-DFT calculations were supported by the A*STAR computational resource centre through the use of its high-performance computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, C.M., Ye, Q., Neo, W.T. et al. Red-to-black electrochromism of 4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-embedded conjugated polymers. J Mater Sci 50, 5856–5864 (2015). https://doi.org/10.1007/s10853-015-9135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9135-5

Keywords

Navigation