Skip to main content
Log in

Study on the surface energies and dispersibility of graphene oxide and its derivatives

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent research has highlighted a remarkable growing focus on surface properties and dispersibility of graphene. In this study, we fabricated four types of surface-modified graphene oxide and its derivatives with different C/O ratios by facile chemical methods. The extent of modification, surface energies, and dispersibility of the as-prepared samples were investigated through elemental analysis, X-ray photoelectron spectroscopy, contact angle, inverse gas chromatography, dynamic multiple light scattering method, and atomic force microscope. Results demonstrated that surface energies are affected by functional groups and C/O ratios significantly. The higher the proportion of polar oxygen-containing groups of materials is, the larger the values of polar surface energies and total surface energies are. Dispersibility of graphene oxide and its derivatives depends not only on surface groups and degree of modification of samples, but also on Hansen solubility parameters of solvents. As a result, we proposed a predicted template to screen the ranges of potential graphene solvents. Such a research presented here would facilitate preparation of graphene–polymer composites and development of graphene-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  2. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  3. Alexander AB (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    Article  Google Scholar 

  4. Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  Google Scholar 

  5. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15):3342–3347

    Article  Google Scholar 

  6. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  Google Scholar 

  7. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9(4):1593–1597

    Article  Google Scholar 

  8. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern I (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    Article  Google Scholar 

  9. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16(2):155–158

    Article  Google Scholar 

  10. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112(14):5263–5266

    Article  Google Scholar 

  11. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  Google Scholar 

  12. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232

    Article  Google Scholar 

  13. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568

    Article  Google Scholar 

  14. Fernández-Merinoa MJ, Paredes J, Villar-Rodil S, Guardia L, Solís-Fernándeza P, Salinas-Torres D, Cazorla-Amorósb D, Morallónb E, Martínez-Alonsoa A, Tascóna J (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 50(9):3184–3194

    Article  Google Scholar 

  15. Sham AY, Notley SM (2013) A review of fundamental properties and applications of polymer-graphene hybrid materials. Soft Matter 9(29):6645–6653

    Article  Google Scholar 

  16. Ayán-Varela M, Paredes JI, Villar-Rodil S, Rozada R, Martínez-Alonso A, Tascón JMD (2014) A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents. Carbon 75:390–400

    Article  Google Scholar 

  17. Hansen CM (2007) Hansen Solubility Parameters: A User’s Handbook, 2nd edn. CRC Press, Hoboken

    Book  Google Scholar 

  18. Burke J (1984) Solubility parameters: theory and application. The Book and Paper Group Annual 3:13–58

    Google Scholar 

  19. Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem Res 56(12):40–52

    Article  Google Scholar 

  20. Das SC, Larson I, Morton DAV, Stewart PJ (2011) Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography. Langmuir 27(2):521–523

    Article  Google Scholar 

  21. Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun Z, Windle AH, Ryan P, Niraj NPP, Wang Z-TT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20(10):1876–1881

    Article  Google Scholar 

  22. Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano 3(8):2340–2350

    Article  Google Scholar 

  23. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721

    Article  Google Scholar 

  24. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  Google Scholar 

  25. Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26(5):3208–3213

    Article  Google Scholar 

  26. Shih CJ, Lin SC, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648

    Article  Google Scholar 

  27. Yi M, Shen Z, Zhang X, Ma S (2013) Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J Phys D Appl Phys 46(2):025301

    Article  Google Scholar 

  28. Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46(1):14–22

    Article  Google Scholar 

  29. Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081

    Article  Google Scholar 

  30. Shih C-J, Strano MS, Blankschtein D (2013) Wetting translucency of graphene. Nat Mater 12(10):866–869

    Article  Google Scholar 

  31. Dai JF, Wang GJ, Wu CK (2014) Investigation of the surface properties of graphene oxide and graphene by inverse gas chromatography. Chromatographia 77(3–4):299–307

    Article  Google Scholar 

  32. Lazar P, Karlický F, Jurečka P, Kocman M, Otyepková E, Šafářová K, Otyepka M (2013) Adsorption of small organic molecules on graphene. JACS 135(16):6372–6377

    Article  Google Scholar 

  33. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  Google Scholar 

  34. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  Google Scholar 

  35. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic press, Rockford

    Google Scholar 

  36. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Article  Google Scholar 

  37. Laub RJ (1980) Physicochemical measurement by gas chromatography. J High Resolut Chromatogr 3(9):486–486

    Article  Google Scholar 

  38. Santos JMRCA, Guthrie JT (2005) Study of a core-shell type impact modifier by inverse gas chromatography. J Chromatogr A 1070(1–2):147–154

    Article  Google Scholar 

  39. Dong S, Brendlé M, Donnet JB (1989) Study of solid surface polarity by inverse gas chromatography at infinite dilution. Chromatographia 28(9–10):469–472

    Article  Google Scholar 

  40. Dorris GM, Gray DG (1980) Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J Colloid Interface Sci 77(2):353–362

    Article  Google Scholar 

  41. Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88(6):927–941

    Article  Google Scholar 

  42. Riddick JA, Bunger WB, Sakano TK (1986) Organic solvents: physical properties and methods of purification, 4th edn. Wiley, New York

    Google Scholar 

  43. Kim H-S, Park W-I, Kang M, Jin H-J (2008) Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J Phys Chem Solids 69(5–6):1209–1212

    Article  Google Scholar 

  44. Wiśniewska M, Chibowski S, Urban T (2012) Investigation of the stability of an alumina suspension in the presence of ionic polyacrylamide. Thin Solid Films 520(19):6158–6164

    Article  Google Scholar 

  45. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Article  Google Scholar 

  46. Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493

    Article  Google Scholar 

  47. Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4(11):3515–3522

    Article  Google Scholar 

  48. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    Article  Google Scholar 

  49. Lee S, Park J, Koo C, Lim B, Kim S (2008) Self-organized grafting of carbon nanotubes by end-functionalized polymers. Macromol Res 16(3):261–266

    Article  Google Scholar 

  50. Papirer E, Brendle E, Ozil F, Balard H (1999) Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37(8):1265–1274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojian Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Wang, G., Ma, L. et al. Study on the surface energies and dispersibility of graphene oxide and its derivatives. J Mater Sci 50, 3895–3907 (2015). https://doi.org/10.1007/s10853-015-8934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8934-z

Keywords

Navigation