Skip to main content
Log in

Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we studied the hydrophobization of TEMPO-oxidized cellulose gel (TOCgel) by covalent coupling of long carbon chains via esterification and amidation processes. In this context, amidation process was achieved by covalent coupling of stearylamine (SA) on the carboxyl moieties of TOCgel using carbodiimide and hydroxysuccimide as catalyst and amidation agent. In parallel, esterification process was realized by grafting of alkyl ketene dimer (AKD) on the hydroxyl groups of TOCgel in the presence of 1-methylimidazole as a promoter. The grafting state of the final products obtained under heterogeneous conditions was confirmed by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), transmission and scanning electron microscopy, and contact angle measurement (CAM). The hydrophobic behavior of the obtained products was discussed based on the results of CAM and absorption rate of water drop in their film surface. FTIR and XPS results indicated the formation of amide bonding for the SA-g-TOCgel (amidation), and β-keto ester linkages for the AKD-g-TOCgel (esterification). As confirmed by CAM, the both chemical treatments enhanced the transition hydrophilic/hydrophobic behavior of the TOCgel fibers. It appeared also that CA values of grafted samples showed a slightly greater hydrophobicity of AKD-g-TOCgel (115° ± 2°) relatively to SA-g-TOCgel (102° ± 2°). However, the absorption rate of water drop seems to be relatively faster for AKD-g-TOCgel than for SA-g-TOCgel. Indeed, the water resistance of amidation product could be due to the high graft efficiency obtained (46.3 %) in comparison with that of the esterification product (30 %). In parallel, this result was confirmed by the dispersion test of modified TOCgels in hexane solvent which indicated clearly the high stable dispersion of SA-g-TOCgel obtained through the amidation process. Moreover, TGA result demonstrated that the thermal stability was found to be slightly higher for SA-g-TOCgel than for AKD-g-TOCgel. Finally, the excellent hydrophobic properties of modified TOCgel material could be suitable to be used as reinforcement for nonpolar polymer matrices in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Azizi Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  2. Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13:301–306

    Article  Google Scholar 

  3. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358

    Article  Google Scholar 

  4. Czaja WK, Young DJ, Kawecki M, Brown RM Jr (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1

    Article  Google Scholar 

  5. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Article  Google Scholar 

  6. Gradwell SE, Renneckar S, Esker AR, Heinze T, Gatenholm P, Vaca-Garcia C, Glasser W (2004) Surface modification of cellulose fibers: towards wood composites by biomimetics. CR Biol 327(9–10):945–953

    Article  Google Scholar 

  7. Baiardo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83(1):38–45

    Article  Google Scholar 

  8. Belgacem M, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12:41–75

    Article  Google Scholar 

  9. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  10. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464

    Article  Google Scholar 

  11. Lonnberg H, Zhou Q, Brumer H, Teeri TT, Malmstrom E, Hult A (2006) Grafting of cellulose fibers with poly(e-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7(7):2178–2185

    Article  Google Scholar 

  12. Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372

    Article  Google Scholar 

  13. Carlmark A, Malmstrom E (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745

    Article  Google Scholar 

  14. Coskun M, Temüz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54(2):342–347

    Article  Google Scholar 

  15. Gaiolas C, Belgacem MN, Silva L, Thielemans W, Costa AP, Nunes M, Silva MJS (2009) Green chemicals and process to graft cellulose fiber. J Colloid Interface Sci 330(2):298–302

    Article  Google Scholar 

  16. Ly B, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445

    Article  Google Scholar 

  17. Benkaddour A, Jradi K, Robert S, Daneault C (2013) Grafting of polycaprolactone on oxidized nanocelluloses by click chemistry. Nanomaterials 3:141–157

    Article  Google Scholar 

  18. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials. Nanoscale 11(4):3274–3294

    Article  Google Scholar 

  19. Chanzy H (1990) Aspects of cellulose structure. In: Kennedy JF, Philips GO, William PA (eds) Cellulose sources and exploitation. Ellis Horwood Ltd, New York, p 3–12

    Google Scholar 

  20. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632

    Article  Google Scholar 

  21. Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39:4202

    Article  Google Scholar 

  22. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934

    Article  Google Scholar 

  23. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57

    Article  Google Scholar 

  24. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687

    Article  Google Scholar 

  25. Loranger E, Piché AO, Daneault C (2012) Influence of high shear dispersion on the production of cellulose nanofibers by ultrasound-assisted TEMPO-oxidation of kraft pulp. Nanomaterials 2(3):286–297

    Article  Google Scholar 

  26. Loranger E, Paquin M, Daneault C, Chabot B (2011) Comparative study of sonochemical effects in an ultrasonic bath and in a large-scale flow-through sonoreactor. Chem Eng J 178:359–365

    Article  Google Scholar 

  27. Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696

    Article  Google Scholar 

  28. Lasseuguette E (2008) Grafting onto cellulose microfibrils. Cellulose 15:571–580

    Article  Google Scholar 

  29. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21

    Article  Google Scholar 

  30. Johnson RK, Zink-Sharp A, Glasser WG (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocellulose. Cellulose 18:1599–1609

    Article  Google Scholar 

  31. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  Google Scholar 

  32. Barazzouk S, Daneault C (2012) Tryptophan-based peptides grafted onto oxidized nanocellulose. Cellulose 19:481–493

    Article  Google Scholar 

  33. Missoum K, Bras J, Belgacem MN (2012) Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose 19:1957–1973

    Article  Google Scholar 

  34. Kamdem DP, Zhang J, Adnot A (2001) Identification of cupric and cuprous copper in copper naphthenate-treated wood by X-ray photoelectron spectroscopy. Holzforschung 55:16–20

    Article  Google Scholar 

  35. Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  Google Scholar 

  36. Ahmed A, Adnot A, Grandmaison JL, Kaliaguine S, Doucet J (1987) ESCA analysis of cellulosic materials. Cellulose Chem Technol 21(5):483–492

    Google Scholar 

  37. Song X, Chen F, Liu F (2012) Preparation and characterization of alkyl ketene dimer (AKD) modified cellulose composite membrane. Carbohydr Polym 88:417–421

    Article  Google Scholar 

  38. Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR Spectroscopy. Wood Sci Technol 35:191–201

    Article  Google Scholar 

  39. Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(3-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  Google Scholar 

  40. Littunen K, Hippi U, Johansson LS, Österberg M, Tammelin T, Liane J, SeppäläJ (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–14047

    Article  Google Scholar 

  41. Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549

    Article  Google Scholar 

  42. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic bio- polymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8:1347–1352

    Article  Google Scholar 

  43. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkaddour, A., Journoux-Lapp, C., Jradi, K. et al. Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process. J Mater Sci 49, 2832–2843 (2014). https://doi.org/10.1007/s10853-013-7989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7989-y

Keywords

Navigation