Skip to main content

Advertisement

Log in

Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel double-sided CdS quantum dots-sensitized TiO2 nanotube (TNT)/ITO photoelectrode is fabricated to improve the energy conversion efficiencies of quantum dots-sensitized solar cells (QDSCs). Our experimental results show that the double-sided CdS quantum dots-sensitized TNT/ITO photoelectrodes show enhanced light absorption. As a consequence, the photoelectrochemical response of the CdS/TNT/ITO photoelectrode is much improved compared with single-sided CdS sensitized TNT arrays on Ti substrate (i.e., CdS/TNT/Ti photoelectrode). An optimum conversion efficiency of 7.5 % is achieved by the double-sided CdS(15)/TNT/ITO photoelectrode, which is an enhancement of about 120 % when compared with the single-sided CdS/TNT/Ti photoelectrode. Our results demonstrate that the energy conversion efficiencies of QDSCs can be improved by designing a new photoelectrode structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 134:2508. doi:10.1021/ja211224s

    Article  PubMed  CAS  Google Scholar 

  2. Pan ZX, Zhang H, Cheng K, Hou YM, Hua JL, Zhong XH (2012) Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6:3982. doi:10.1021/Nn300278z

    Article  PubMed  CAS  Google Scholar 

  3. Wang GM, Yang XY, Qian F, Zhang JZ, Li Y (2010) Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett 10:1088. doi:10.1021/Nl100250z

    Article  PubMed  CAS  ADS  Google Scholar 

  4. Seol M, Kim H, Tak Y, Yong K (2010) Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem Commun 46:5521. doi:10.1039/C0cc00542h

    Article  CAS  Google Scholar 

  5. Lee Y-L, Lo Y-S (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604. doi:10.1002/adfm.200800940

    Article  Google Scholar 

  6. Wang J, Vennerberg D, Lin Z (2011) Quantum dot sensitized solar cells. J Nanoeng Nanomanuf 1:155. doi:10.1166/jnan.2011.1057

    Article  CAS  Google Scholar 

  7. Zhu K, Neale NR, Miedaner A, Frank AJ (2006) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69. doi:10.1021/nl062000o

    Article  ADS  Google Scholar 

  8. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007. doi:10.1021/ja0782706

    Article  PubMed  CAS  Google Scholar 

  9. Kuang D, Brillet J, Chen P et al (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113. doi:10.1021/nn800174y

    Article  PubMed  CAS  Google Scholar 

  10. Chen C, Ali G, Yoo SH, Kum JM, Cho SO (2011) Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. J Mater Chem 21:16430. doi:10.1039/C1jm13616j

    Article  CAS  Google Scholar 

  11. Lee W, Kang SH, Min SK, Sung YE, Han SH (2008) Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochem Commun 10:1579. doi:10.1016/j.elecom.2008.08.038

    Article  CAS  Google Scholar 

  12. Gao XF, Li HB, Sun WT, Chen Q, Tang FQ, Peng LM (2009) CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J Phys Chem C 113:7531. doi:10.1021/Jp810727n

    Article  CAS  Google Scholar 

  13. Zhou Q, Yuan BL, Xu DX, Fu ML (2012) Synthesis, characterization and photocatalytic performance of CdS/TiO2 nanotube photocatalyst. Chin J Catal 33:850. doi:10.3724/Sp.J.1088.2012.11214

    Google Scholar 

  14. Foong TRB, Shen YD, Hu X, Sellinger A (2010) Template‐directed liquid ALD growth of TiO2 nanotube arrays: properties and potential in photovoltaic devices. Adv Funct Mater 20:1390. doi:10.1002/adfm.200902063

    Article  CAS  Google Scholar 

  15. Lin CJ, Yu WY, Chien SH (2010) Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J Mater Chem 20:1073. doi:10.1039/B917886d

    Article  CAS  Google Scholar 

  16. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235. doi:10.1021/jp070273h

    Article  CAS  Google Scholar 

  17. Chen QQ, Xu DS, Wu ZY, Liu ZF (2008) Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology 19:365708. doi:10.1088/0957-4484/19/36/365708

    Article  PubMed  ADS  Google Scholar 

  18. Ali G, Yoo SH, Kum JM, Kim YN, Cho SO (2011) A novel route to large-scale and robust free-standing TiO2 nanotube membranes based on N2 gas blowing combined with methanol wetting. Nanotechnology 22:245602. doi:10.1088/0957-4484/22/24/245602

    Article  PubMed  ADS  Google Scholar 

  19. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257. doi:10.1021/cm7028917

    Article  CAS  Google Scholar 

  20. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286. doi:10.1021/nl070264k

    Article  PubMed  CAS  ADS  Google Scholar 

  21. Park JH, Lee TW, Kang MG (2008) Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chem Commun 25:2867. doi:10.1039/B800660a

    Article  Google Scholar 

  22. Mohapatra SK, Mahajan VK, Misra M (2007) Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting. Nanotechnology 18:445705

    Article  ADS  Google Scholar 

  23. Mor GK, Varghese OK, Wilke RHT et al (2008) p-Type Cu−Ti−O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:1906. doi:10.1021/nl080572y

    Article  PubMed  CAS  ADS  Google Scholar 

  24. Chen C, Xie Y, Ali G, Yoo SH, Cho SO (2011) Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer. Nanotechnology 22:015202. doi:10.1088/0957-4484/22/1/015202

    Article  PubMed  ADS  Google Scholar 

  25. Lei B-X, Liao J-Y, Zhang R, Wang J, Su C-Y, Kuang D-B (2010) Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J Phys Chem C 114:15228. doi:10.1021/jp105780v

    Article  CAS  Google Scholar 

  26. Lai YK, Lin ZQ, Zheng DJ, Chi LF, Du RG, Lin CJ (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175. doi:10.1016/j.electacta.2012.06.105

    Article  CAS  Google Scholar 

  27. Chen QW, Xu DS (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310. doi:10.1021/Jp900336e

    Article  CAS  ADS  Google Scholar 

  28. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124. doi:10.1021/Ja0777741

    Article  PubMed  CAS  Google Scholar 

  29. Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784. doi:10.1021/Cm802282t

    Article  CAS  Google Scholar 

  30. Ahmed R, Will G, Bell J, Wang H (2012) Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method. J Nanopart Res 14:1140. doi:10.1007/s11051-012-1140-x

    Article  Google Scholar 

  31. Luo J, Ma L, He T, Ng CF, Wang S, Sun H, Fan HJ (2012) TiO2 rutile–anatase core–shell nanorod and nanotube arrays for photocatalytic applications. J Phys Chem C 116:11956. doi:10.1021/jp3031754

    Article  CAS  Google Scholar 

  32. Khan SU, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243. doi:10.1126/science.1075035

    Article  PubMed  CAS  ADS  Google Scholar 

  33. Lin S-C, Lee Y-L, Chang C-H, Shen Y-J, Yang Y-M (2007) Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl Phys Lett 90:143517. doi:10.1063/1.2721373

    Article  ADS  Google Scholar 

  34. Chang C-H, Lee Y-L (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 91:053503. doi:10.1063/1.2768311

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Henan University distinguished professor startup fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Chen or Fumin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Li, F., Li, G. et al. Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. J Mater Sci 49, 1868–1874 (2014). https://doi.org/10.1007/s10853-013-7875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7875-7

Keywords

Navigation