Skip to main content
Log in

The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospinning was used to produce PVDF nonwoven fiber mats under varying parameters of polymer concentration, applied voltage, salt content, and spinning distance. The results indicated that both the polymer and salt concentration had a noteworthy influence on both the morphology and diameter of the nanofibers. Improved fiber morphology and increased PVDF fiber diameter were observed as the PVDF concentration was increased. Adding different concentrations of NaCl to the PVDF polymer solution resulted in improved electrospinnability of PVDF resulting in better morphology and with increasing salt content, smaller fiber diameter. In particular increasing the salt content led to well defined fibers in otherwise nonfiber-producing formulations. The applied voltage and spinning distance were also seen to have an influence on the properties of the PVDF nanofibers. Nanofibers without beads were formed under the improved conditions of the different parameters studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daels N, De Vrieze S, Sampers I, Decostere B, Westbroek P, Dumoulin A, Dejans P, De Clerk K, Van Hulle SWH (2011) Desalination 275:285

    Article  CAS  Google Scholar 

  2. De Vrieze S, van Camp T, Nelvig A, Hagstrom B, Westbroek P, De Clerck K (2009) J Mater Sci 44:1357. doi:10.1007/s10853-008-3010-6

    Article  Google Scholar 

  3. Botes M, Cloete TE (2007) Crit Rev Microbiol 36:68

    Article  Google Scholar 

  4. Smit E, Buttner U, Sanderson RD (2005) Polymer 46:2419

    Article  CAS  Google Scholar 

  5. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223

    Article  CAS  Google Scholar 

  6. Formhals A (2003) US Patent 1,975,504

  7. Melechko AV, Guillorn MA, Lowndes DH, Simpson ML (2002) Appl Phys Lett 80:4816

    Article  Google Scholar 

  8. Ding W, Wei S, Zhu J, Chen X, Rutman D, Guo Z (2010) Macromol Mater Eng 295:958

    Article  CAS  Google Scholar 

  9. Jacobs V, Anandjiwala RD, Maaza M (2010) J Appl Polym Sci 115:3130

    Article  CAS  Google Scholar 

  10. Srinivasan G, Reneker DH (1995) Polym Int 36:195

    Article  CAS  Google Scholar 

  11. Reneker DH, Chun I (1996) Nanotechnology 7:216

    Article  CAS  Google Scholar 

  12. Yarin AL, Koombhongse RenekerDH (2001) J Appl Phys 89:3015

    Article  Google Scholar 

  13. Jin H, Du X, Jiang Y (2009) Proc of SPIE 7508:750814. doi:10.1117/12.837918

    Article  Google Scholar 

  14. Cozza ES, Monticelli O, Marsano E, Cebe P (2012) Polym Int. doi:10.1002/pi.4314

    Google Scholar 

  15. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) J Memb Sci 281:581

    Article  CAS  Google Scholar 

  16. Liao Y, Wang R, Tian M, Qiu C, Fane AG (2013) J Memb Sci 425–426:30

    Article  Google Scholar 

  17. Zong X, Kim K, Fang D, Ran S, Chu B (2002) Polymer 43:4403

    Article  CAS  Google Scholar 

  18. Arayanarakul K, Choktaweesap N, Aht-ong D, Meechaisue C, Supaphol P (2006) Macromol Mater Eng 291:581

    Article  CAS  Google Scholar 

  19. Deitzel JM, Kleinmeyer J, Beck HarrisD, Tan NC (2001) Polymer 42:261

    Article  CAS  Google Scholar 

  20. Fong H, Chun I, Reneker DH (2000) Polymer 40:4585

    Article  Google Scholar 

  21. Jin H, Du X, Jiang Y (2009) Proc of SPIE 7508:750814. doi:10.1117/12.837918

    Article  Google Scholar 

  22. Sill TJ, von Recum HA (2008) Biomater 29:1989. doi:10.1016/j.biomaterials.2008.01.011

    Article  CAS  Google Scholar 

  23. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramakrishna SS (2005) J Appl Polym Sci 96:557

    Article  CAS  Google Scholar 

  24. Choi SS, Lee YS, Joo CW, Lee SG, Park J, Hang KH (2004) Elect Acta 50:339

    Article  CAS  Google Scholar 

  25. Zhao Z, Zhang J, Wang M, Zhang H, Han CC (2012) J Memb Sci 394–395:209

    Article  Google Scholar 

  26. Yee WA, Kotaki M, Liu Y, Lu X (2007) Polymer 48:512

    Article  CAS  Google Scholar 

  27. Li Q, Jia Z, Yang Y, Wang L, Guan Z (2007) Proc of IEEE internat conf solid Dielec. doi:10.1109/ICSD.2007.4290790

    Google Scholar 

  28. Wang T, Kumar S (2006) J Appl Polym Sci 102:1023

    Article  CAS  Google Scholar 

  29. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Eur Polym J 41:423

    Article  CAS  Google Scholar 

  30. Ziabari M, Mottaghitalag V, Haghi AK (2010) Kor J Chem Eng 27:340

    Article  CAS  Google Scholar 

  31. Sui X, Wiesel E, Dagner EH (2011) J Nanosci Nanotechnol 11:7931–7936

    Article  CAS  Google Scholar 

  32. Wright LD, Andric T, Freeman JW (2011) Mater Sci Eng C 31:30

    Article  CAS  Google Scholar 

  33. Wang Y, Wang B, Wang G, Yin T, Yu Q (2009) Polym Bull 63:259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks DST/Mintek Nanotechnology Innovation Centre (SA) for permission to publish the results and providing the financial support. Dr Phumlani Mdluli and Mr Mokae Bambo are thanked for proof reading the manuscript and SEM analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Matabola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matabola, K.P., Moutloali, R.M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J Mater Sci 48, 5475–5482 (2013). https://doi.org/10.1007/s10853-013-7341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7341-6

Keywords

Navigation