Skip to main content
Log in

Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Compounds of Mg2Si1−x Sn x are environmentally friendly, inexpensive and high-efficiency thermoelectric materials for energy conversion in the temperature range 300–550 °C. In this study, the thermal stability is investigated of fine powders and sintered pellets of the compounds Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4 by heating the samples from room temperature to ~400 °C in air, while measuring powder X-ray diffraction patterns. The diffractograms of the pellets show no significant changes upon heating for several hours, while the powder samples show increasing emergence of a Mg2Sn-rich, Mg2Si1−x Sn x phase, and other impurities upon heating for only several minutes. This is attributed to the larger amount of surface area in the powder samples. The appearance of the Mg2Sn-rich phase is most pronounced for the Sn-rich composition. In addition, the thermal expansion coefficients were extracted from the powder diffraction patterns. All materials have been synthesized by induction-melting followed by ball milling and spark plasma sintering. The thermal conductivity, Seebeck coefficient, electrical resistivity and Hall carrier concentrations have been measured from room temperature to 400 °C on the pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV (2006) Phys Rev B 74:045207

    Article  Google Scholar 

  2. Zaitsev VK, Fedorov MI, Eremin IS, Gurieva EA (2006) In: Rowe DM (ed) Thermoelectric handbook, macro to nano. CRC Taylor & Francis, Boca Raton, p 29

    Google Scholar 

  3. Isoda Y, Nagai T, Fujiu H, Imai Y, Shinohara Y (2007) In: 26th International Conference on Thermoelectrics (ICT 2007), p 251

  4. Gao H, Zhu T, Liu X, Chen L, Zhao X (2011) J Mater Chem 21:5933

    Article  CAS  Google Scholar 

  5. Rowe DM (2006) Thermoelectrics handbook : macro to nano. CRC/Taylor & Francis, Boca Raton

    Google Scholar 

  6. Snyder GJ, Toberer ES (2008) Nat Mater 7:105

    Article  CAS  Google Scholar 

  7. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Adv Mater 22:3970

    Article  CAS  Google Scholar 

  8. Liu W, Tan X, Yin K, Liu H, Tang X, Shi J, Zhang Q, Uher C (2012) Phys Rev Lett 108:166601

    Article  Google Scholar 

  9. Liu W, Tang X, Li H, Sharp J, Zhou X, Uher C (2011) Chem Mater 23:5256

    Article  CAS  Google Scholar 

  10. Zhang Q, He J, Zhu TJ, Zhang SN, Zhao XB, Tritt TM (2008) Appl Phys Lett 93:102109

    Article  Google Scholar 

  11. Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AY, Vedernikov MV (2005) In: 24th International Conference on Thermoelectrics (ICT) (IEEE Cat. No. 05TH8854C)

  12. Jung I-H, Kang D-H, Park W-J, Kim NJ, Ahn S (2007) Calphad 31:192

    Article  CAS  Google Scholar 

  13. Sondergaard M, Christensen M, Borup KA, Yin H, Iversen BB (2012) Acta Mater 60:5745

    Article  Google Scholar 

  14. Søndergaard M, Christensen M, Borup KA, Yin H, Iversen BB (2012) J Electron Mater

  15. Adachi S, Oguchi T, Tanida H, Park SY, Shimizu H, Miyatake H, Kamiya N, Shiro Y, Inoue Y, Ueki T, Iizuka T (2001) Nucl Instrum Method A Part 1 711:467–468

    Google Scholar 

  16. Rodriguezcarvajal J (1993) Phys B 192:55

    Article  CAS  Google Scholar 

  17. van der Pauw LJ (1958) Philips Res Rep 13:1–9

    Google Scholar 

  18. Borup KA, Toberer ES, Fleurial JP, Snyder GJ, Iversen BB (2012) Rev Sci Instrum (submitted)

  19. Iwanaga S, Toberer ES, LaLonde A, Snyder GJ (2011) Rev Sci Instrum 82:063905

    Article  Google Scholar 

  20. Boudemagh D, Fruchart D, Haettel R, Hlil EK, Lacoste A, Ortega L, Skryabina N, Tobola J, Wolfers P (2011) Diffus Defect B 170:253

    CAS  Google Scholar 

  21. Fistul VI (1969) Heavily doped semiconductors. Plenum Press, New York

    Google Scholar 

  22. Fedorov MI, Zaitsev VK, Vedernikov MV (2006) In: 25th International Conference on Thermoelectrics (IEEE Cat No. 06TH8931C)

Download references

Acknowledgements

This study was supported by the Danish National Research Foundation (Center for Materials Crystallography), and the Danish Strategic Research Council (Center for Energy Materials). The authors wish to thank the Riken beamline BL44B2 at Spring8 for allocation of beamtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mogens Christensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1,033 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Søndergaard, M., Christensen, M., Borup, K.A. et al. Thermal stability and thermoelectric properties of Mg2Si0.4Sn0.6 and Mg2Si0.6Sn0.4 . J Mater Sci 48, 2002–2008 (2013). https://doi.org/10.1007/s10853-012-6967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6967-0

Keywords

Navigation