Skip to main content
Log in

Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Incited by the aim of improving the strength and preserving a moderate ductility, the promising approach of a combined equal-channel angular pressing (ECAP) and aging treatment was applied to the 6056 Al–Mg–Si–(Cu) alloy. This method has been proven to be most effective for a small number of ECAP passes in the solid-solution condition and a following aging treatment, which is timed to enable precipitation hardening up to the peak strength on the one hand and microstructural recovery just before the onset of softening on the other hand. In this work, the evolution of hardness during post-ECAP aging and the effect of aging temperature and time on strength and ductility will be discussed. By means of low-voltage scanning transmission electron microscopy, the underlying microstructural features in terms of dislocation structure and precipitation characteristics will be presented. It has been found that peak aging especially at low-aging temperatures is suitable for achieving the desired high-strength combination, whereas—on the expense of some percent in the strengthening—the ductility is best in slightly underaged conditions. Compared to the initial peak-aged condition, an increase in strength of 27%, combined with a moderate ductility of 6.5% uniform elongation was achieved for peak aging at 150 °C after two passes of ECAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881–981

    Article  CAS  Google Scholar 

  2. Furukawa M, Horita Z, Langdon TG (2001) Adv Eng Mater 3:121–125

    Article  CAS  Google Scholar 

  3. Valiev RZ (2005) In: Zehetbauer M, Valiev RZ (eds) Nanomaterials by severe plastic deformation. Wiley-VCH Verlag GmbH & Co. KGaA, pp 107–117

  4. Mughrabi H, Höppel HW, Kautz M (2004) Scr Mater 51:807

    Article  CAS  Google Scholar 

  5. Höppel HW (2006) Mater Sci Forum 503–504:259

    Article  Google Scholar 

  6. Koch CC (2003) Scr Mater 49:657

    Article  CAS  Google Scholar 

  7. Höppel HW, Kautz M, Xu C, Murashkin A, Langdon TG, Valiev RZ, Mughrabi H (2006) Int J Fatigue 28:1001

    Article  Google Scholar 

  8. Kim JK, Jeong HG, Hong SI, Kim YS, Kim WJ (2001) Scr Mater 45:901

    Article  CAS  Google Scholar 

  9. Kim WJ, Chung CS, Ma DS, Hong SI, Kim HK (2003) Scr Mater 49:333

    Article  CAS  Google Scholar 

  10. Kim WJ, Kim JK, Kim HK, Park JW, Jeong YH (2008) J Alloys Compd 450:222

    Article  CAS  Google Scholar 

  11. Zhao YH, Liao XZ, Cheng S, Ma E, Zhu YT (2006) Adv Mater 18:2280

    Article  CAS  Google Scholar 

  12. Cheng S, Zhao YH, Zhu YT, Ma E (2007) Acta Mater 55:5822

    Article  CAS  Google Scholar 

  13. Hockauf M, Meyer LW, Zillmann B, Hietschold M, Schulze S, Krüger L (2009) Mater Sci Eng A 503:167

    Article  Google Scholar 

  14. Barber RE, Dudo T, Yasskin PB, Hartwig KT (2004) Scr Mater 51:373

    Article  CAS  Google Scholar 

  15. Roven HJ, Liu M, Werenskiold JC (2008) Mater Sci Eng A 483–484:54

    Google Scholar 

  16. Cai M, Field DP, Lorimer GW (2004) Mater Sci Eng A 373:65

    Article  Google Scholar 

  17. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT (2004) Acta Mater 52:4589

    Article  CAS  Google Scholar 

  18. Takeda M, Ohkubo F, Shirai T, Fukui K (1998) J Mater Sci 33:2385. doi:10.1023/A:1004355824857

    Article  CAS  ADS  Google Scholar 

  19. Gallais C, Denquin A, Bréchet Y, Lapasset G (2008) Mater Sci Eng A 496:77

    Article  Google Scholar 

  20. Miao WF, Laughlin DE (2000) Metall Mater Trans A 31:361

    Article  Google Scholar 

  21. Chakrabarti DJ, Laughlin DE (2004) Prog Mater Sci 49:389–410

    Article  CAS  Google Scholar 

  22. Delmas F, Casanove MJ, Lours P, Couret A, Coujou A (2004) Mater Sci Eng A 373:80

    Article  Google Scholar 

  23. Cabibbo M, McQueen HJ, Evangelista E, Spigarelli S, Di Paola M, Falchero A (2007) Mater Sci Eng A 460–461:86

    Google Scholar 

  24. Ismail ZH (1995) Scripta Metall Mater 32:457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. D. Schmidt and Mr. M. Bormann for their assistance in heat treatment and mechanical testing and Mrs. A. Schulze for the accurate specimen preparation for STEM measurements. This work was financially supported by the “Deutsche Forschungsgemeinschaft” within the framework of “Sonderforschungsbereich 692—Hochfeste aluminiumbasierte Leichtbauwerkstoffe für Sicherheitsbauteile”. Further thanks go to RIBE Fastening Systems in Germany for kindly providing the 6056 Al alloy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Hockauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hockauf, K., Meyer, L.W., Hockauf, M. et al. Improvement of strength and ductility for a 6056 aluminum alloy achieved by a combination of equal-channel angular pressing and aging treatment. J Mater Sci 45, 4754–4760 (2010). https://doi.org/10.1007/s10853-010-4544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4544-y

Keywords

Navigation