Skip to main content
Log in

Microstructural phase evaluation of high-nitrogen Fe–Cr–Mn alloy powders synthesized by the mechanical alloying process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the formation of Fe18Cr8MnxN alloys by mechanical alloying (MA) of the elemental powder mixtures was investigated by running the milling process under nitrogen and argon gas atmospheres. The effect of the milling atmosphere on the microstructure and phase contents of the as-milled powders was evaluated by X-ray diffraction and transmission electron microscopy. The thermal behavior of the alloyed powders was also studied by differential scanning calorimetry. The results revealed that in the samples milled under nitrogen, three different phases, namely ferrite (α), austenite (γ), and a considerable amount of amorphous phase are present in the microstructure. In contrast, in the samples milled under argon, the structure contains the dominant crystalline ferrite phase. By progression of MA under the nitrogen atmosphere, the ferrite-to-austenite phase transformation occurs; meanwhile, the quantity and stability of the amorphous phase increase, becoming the dominant phase after 72 h and approaching 83.7 wt% within 144 h. The quantitative results also showed that by increasing the milling time, grain refinement occurs more significantly under the nitrogen atmosphere. It was realized that the infused nitrogen atoms enhance the grain refinement phenomenon and act as the main cause of the amorphization and α-to-γ phase transformation during MA. It was also found out that the dissolved nitrogen atoms suppress the crystallization of the amorphous phase during the heating cycle, thereby improving the thermal stability of the amorphous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nakada N, Hirakawa N, Tsuchiyama T et al (2007) Scr Mater 57:153

    Article  CAS  Google Scholar 

  2. Sumita M, Hanawa T, Teoh SH (2004) Mater Sci Eng C 24:753

    Article  Google Scholar 

  3. Balachandran G, Bhatia ML, Ballal NB et al (2001) ISIJ Int 41:1018

    Article  CAS  Google Scholar 

  4. Fréchard S, Redjaïmia A, Lach E et al (2008) Mater Sci Eng A 480:89

    Article  Google Scholar 

  5. Murakami R, Aoyama Y, Tsuchida N et al (2007) Mater Sci Forum 561–565:37

    Article  Google Scholar 

  6. Cisneros MM, López HF, Mancha H et al (2002) Metall Mater Trans A 33:2139

    Article  Google Scholar 

  7. Cisneros MM, López HF, Mancha H et al (2005) Metall Mater Trans A 36:1309

    Google Scholar 

  8. Méndez M, Mancha H, Cisneros MM et al (2002) Metall Mater Trans A 33:3273

    Article  Google Scholar 

  9. Mancha H, Mendoza G, Belmares S et al (2001) Mater Sci Forum 360–362:189

    Article  Google Scholar 

  10. Kataoka K, Tsuchiyama T, Goto H et al (2003) Trans Ind Inst Metal 56:527

    CAS  Google Scholar 

  11. Enayati MH, Bafandeh MR (2008) J Alloys Compd 454:228

    Article  CAS  Google Scholar 

  12. Jiang JZ, Gente C, Bormann R (1998) Mater Sci Eng A 242:268

    Article  Google Scholar 

  13. Zhu LH, Huang QW, Zhao HF (2004) Scr Mater 51:527

    Article  CAS  Google Scholar 

  14. Suryanarayana C (2001) Prog Mater Sci 46:1

    Article  CAS  Google Scholar 

  15. Wagner CNJ, Boldrick MS (1993) J Alloys Compd 194:295

    Article  CAS  Google Scholar 

  16. Johnson WL (1988) Mater Sci Eng 97:1

    Article  CAS  Google Scholar 

  17. Chattopadhyay PP, Samanta A, Lojkowski W et al (2007) Metall Mater Trans A 38:2298

    Article  Google Scholar 

  18. Shen G, Jiang DM, Lin F et al (2005) Physica B 367:137

    Article  CAS  Google Scholar 

  19. Du SW, Ramanujan RV (2005) J Magn Magn Mater 292:286

    Article  CAS  Google Scholar 

  20. Popa F, Isnard O, Chicinas I et al (2007) J Magn Magn Mater 316:e900

    Article  CAS  Google Scholar 

  21. Shaham D, Rawers J, Zolotoyabko E (1996) Mater Lett 27:41

    Article  CAS  Google Scholar 

  22. Munitz A, Kimmel G, Rawers JC et al (1997) Nanostruct Mater 8:867

    Article  CAS  Google Scholar 

  23. Rawers JC, Govier D, Doan R (1996) Mater Sci Eng A 220:162

    Article  Google Scholar 

  24. Koyano T, Takizawa T, Fukunaga T et al (1993) Jpn J Appl Phys 32:1524

    Article  Google Scholar 

  25. Ogino Y, Murayama S, Yamasaki T (1991) J Less-Common Met 168:221

    Article  CAS  Google Scholar 

  26. Ogino Y, Yamasaki T, Murayama S et al (1990) J Non-Cryst Solids 117–118:737

    Article  Google Scholar 

  27. Miura H, Omuro K, Ogawa H (1996) ISIJ Int 36:951

    Article  CAS  Google Scholar 

  28. Aoki K, Memezawa A, Masumoto T (1992) Appl Phys Lett 01(9):1037

    Article  Google Scholar 

  29. Fukunaga T, Ishikawa E, Koyano T et al (1995) Physica B 213–214:526

    Article  Google Scholar 

  30. Fukunaga T, Kuroda N, Lee CH et al (1994) J Non-Cryst Solids 176:98

    Article  CAS  Google Scholar 

  31. Winburn RS, Grier DG, Mccarthy GJ et al (2000) Powder Diffr 15:163

    Article  CAS  Google Scholar 

  32. De La Torre AG, Bruque S, Aranda MAG (2001) J Appl Cryst 34:196

    Article  Google Scholar 

  33. Kemethmüller S, Roosen A, Goetz-Neunhoeffer F et al (2006) J Am Ceram Soc 89:2632

    Article  Google Scholar 

  34. Gualtieri ML, Prudenziati M, Gualtieri AF (2006) Surf Coat Technol 201:2984

    Article  CAS  Google Scholar 

  35. Whitfield PS, Mitchell LD (2003) J Mater Sci 38:4415. doi:https://doi.org/10.1023/A:1026363906432

    Article  CAS  Google Scholar 

  36. Fecht HJ (1995) Nanostruct Mater 6:33

    Article  CAS  Google Scholar 

  37. Yelsukov EP, Dorofeev GA, Zagainov AV et al (2004) Mater Sci Eng A 369:16

    Article  Google Scholar 

  38. Mohamed FA (2003) Acta Mater 51:4107

    Article  CAS  Google Scholar 

  39. Eckert J, Holzer JC, Kill CEIII et al (1992) J Mater Res 7:1751

    Article  CAS  Google Scholar 

  40. Zhao YH, Zhu YT, Liao XZ et al (2007) Mater Sci Eng A 463:22

    Article  Google Scholar 

  41. Buffington FS, Cohen M (1954) Acta Metall 2:660

    Article  CAS  Google Scholar 

  42. Borg RJ, Diens G (1988) Solid state diffusion. Academic Press, Boston, p 80

    Google Scholar 

  43. Lin S, Ledbetter H (1993) Mater Sci Eng A 167:81

    Article  Google Scholar 

  44. Ledbetter HM, Austin MW (1985) Mater Sci Eng 70:143

    Article  CAS  Google Scholar 

  45. Mohamed FA, Xun Y (2003) Mater Eng A 358:178

    Article  Google Scholar 

  46. Schramm RE, Reed RP (1975) Metall Trans A 6:1345

    Article  Google Scholar 

  47. Stoltz RE, Van der Sande JB (1980) Metall Trans A 11:1033

    Article  Google Scholar 

  48. Dulieu D, Nutting J (1964) Iron Steel Inst 86:140

    Google Scholar 

  49. Kibey S, Liu JB, Curtis MJ, Johnson DD et al (2006) Acta Mater 54:2991

    Article  CAS  Google Scholar 

  50. Jiang B, Qi X, Zhou W et al (1996) Scr Mater 34:1437

    Article  CAS  Google Scholar 

  51. Fujikura M, Takada K, Ishida K (1975) ISIJ Int 15:464

    CAS  Google Scholar 

  52. Yakubtsovi A, Ariapour A, Perovic DD (1999) Acta Mater 47:1271

    Article  Google Scholar 

  53. Gavriljuk V, Petrov Y, Shanina B (2006) Scr Mater 55:537

    Article  CAS  Google Scholar 

  54. Byranes MLG, Grujicic M, Owen WS (1987) Acta Metall 35:1853

    Article  Google Scholar 

  55. Werner E (1998) Mater Sci Eng A 101:93

    Google Scholar 

  56. Nieh TG, Wadsworth J (1991) Scr Metall 25:955

    Article  CAS  Google Scholar 

  57. Egami T, Waseda Y (1984) J Non-Cryst Solid 64:113

    Article  CAS  Google Scholar 

  58. Van der Kolk GJ, Miedema AR, Niessen AK (1988) J Less-Common Met 145:1

    Article  Google Scholar 

  59. Nishizawa T (1973) Bull Jpn Inst Met 12:401

    Article  CAS  Google Scholar 

  60. Meng Q, Zhou N, Rong Y et al (2002) Acta Mater 50:4563

    Article  CAS  Google Scholar 

  61. Qiu C (1993) Metall Trans A 24:2393

    Article  Google Scholar 

  62. Weber TA, Stillinger FH (1985) Phys Rev B 31:1954

    Article  CAS  Google Scholar 

  63. Sharma S, Suryanarayana C (2008) J Appl Phys 103:013504-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Iran Alloyed Steel Company for LECO gas analysis. Shiraz University Research Council and Nanyang Technological University (NTU) are also acknowledged for their support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amini, R., Hadianfard, M.J., Salahinejad, E. et al. Microstructural phase evaluation of high-nitrogen Fe–Cr–Mn alloy powders synthesized by the mechanical alloying process. J Mater Sci 44, 136–148 (2009). https://doi.org/10.1007/s10853-008-3117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3117-9

Keywords

Navigation