Skip to main content
Log in

Effect of particle size on kinetics crystallization of an iron-rich glass

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent on the glass particle size, 100 μm being the critical size. Glass fractions with particle size >100 μm show three-dimensional crystal growth controlled by diffusion, whereas a particle size <100 μm leads to an interface reaction mechanism with two-dimensional growth of crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Partridge G (1994) Glass Technol 35:116

    CAS  Google Scholar 

  2. Partridge G (1994) Glass Technol 35:171

    CAS  Google Scholar 

  3. James PF (1995) J Non-Cryst Solids 181:1

    Article  CAS  Google Scholar 

  4. Pannhorst W (1997) J Non-Cryst Solids 219:198

    Article  CAS  Google Scholar 

  5. Höland W, Beall G (2002) In: Glass-ceramic technology. The American Ceramic Society, Ohio

  6. Bocola W, Donato A (1972) Energia Nucleare 19(6):390

    CAS  Google Scholar 

  7. Donato A, Bocola W (1972) Energia Nucleare 19(7):459

    CAS  Google Scholar 

  8. Hidalgo M, Rincón JMA (1987) Bol Soc Esp Ceram Vidr 26:227

    CAS  Google Scholar 

  9. Donald IW, Metcalfe BL, Taylor RNJ (1997) J Mater Sci 32:5851. doi:https://doi.org/10.1023/A:1018646507438

    Article  CAS  Google Scholar 

  10. Hrma P, Crum JV, Bates DJ, Bredt PR, Greenwood LR, Smith HD (2005) J Nucl Mater 345(1):19

    Article  CAS  Google Scholar 

  11. Hrma P, Crum JV, Bredt PR, Greenwood LR, Arey BW, Smith HD (2005) J Nucl Mater 345(1):31

    Article  CAS  Google Scholar 

  12. Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, Raj K (2006) J Nucl Mater 358(2–3):129

    Article  CAS  Google Scholar 

  13. Rawlings RD, Wu P, Boccaccini AR (2006) J Mater Sci 41(3):733. doi:https://doi.org/10.1007/s10853-006-6554-3

    Article  CAS  Google Scholar 

  14. Romero M, Rincón JMA (1999) J Am Ceram Soc 82:1313

    Article  CAS  Google Scholar 

  15. Karamanov A, Taglieri G, Pelino M (1999) J Am Ceram Soc 82:3012

    Article  CAS  Google Scholar 

  16. Karamanov A, Pisciella P, Pelino M (2000) J Eur Ceram Soc 20:2233

    Article  CAS  Google Scholar 

  17. Kavouras P, Loannidis TA, Kehagias T, Tsilika I, Chrissafis K, Kokkou S, Zouboulis A, Karakostas T (2007) J Eur Ceram Soc 27(5):2317

    Article  CAS  Google Scholar 

  18. Kavouras P, Kehagias T, Tsilika I, Kaimakamis G, Chrissafis K, Kokkou S, Papadopoulos D, Karakostas T (2007) J Hazard Mater 139(3):424

    Article  CAS  Google Scholar 

  19. Pelino M, Karamanov A, Pisciella P, Crisucci S, Zonetti D (2002) Waste Manage 22(8):945

    Article  CAS  Google Scholar 

  20. Karamanov A, Aloisi M, Pelino M (2007) J Hazard Mater 140(1–2):333

    Article  CAS  Google Scholar 

  21. Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2004) J Non-Cryst Solids 333:187

    Article  CAS  Google Scholar 

  22. Surinach S, Baro MD, Clavaguera MT, Clavaguera N (1983) J Non-Cryst Solids 58:209

    Article  CAS  Google Scholar 

  23. Ligero RA, Vazques J, Casas-Ruiz M, Jiménez-Garay RA (1991) J Mater Sci 26:211. doi:https://doi.org/10.1007/BF00576054

    Article  CAS  Google Scholar 

  24. Campos AL, Silva NT, Melo FCL, Oliveira MAS, Thim GP (2002) J Non-Cryst Solids 304:9

    Article  Google Scholar 

  25. Wei P, Rongti L (1999) Mater Sci Eng A 271:298

    Article  Google Scholar 

  26. Romero M, Martín-Márquez J, Rincón JMA (2006) J Eur Ceram Soc 26:1647

    Article  CAS  Google Scholar 

  27. Matusita K, Sakka S, Matsui Y (1975) J Mater Sci 10:961. doi:https://doi.org/10.1007/BF00823212

    Article  CAS  Google Scholar 

  28. Matusita K, Sakka S (1979) Phys Chem Glasses 20:81

    CAS  Google Scholar 

  29. Matusita K, Sakka S (1980) J Non-Cryst Solids 38–39:741

    Article  Google Scholar 

  30. Deer WA, Howie RA, Zussman J (1992) In: The rock-forming minerals. Pearson Education Limited, Essex, p 170

  31. Romero M, Rincon JMA (1998) J Eur Ceram Soc 18:153

    Article  CAS  Google Scholar 

  32. Karamanov A, Pelino M (2001) J Non-Cryst Solids 281:139

    Article  CAS  Google Scholar 

  33. Rincón JMA (1992) Polym Plast Technol Eng 31:309

    Article  Google Scholar 

  34. Matusita K, Miura K, Komatsu T (1985) Thermochim Acta 88:283

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This investigation has been carried out in the frame of a co-operation project between the Spanish Council for Scientific Research (CSIC) and the Slovak Academy of Sciences (SAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, M., Kovacova, M. & Rincón, J.M. Effect of particle size on kinetics crystallization of an iron-rich glass. J Mater Sci 43, 4135–4142 (2008). https://doi.org/10.1007/s10853-007-2318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2318-y

Keywords

Navigation