Skip to main content
Log in

Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni2MnGa

  • Intergranular and Interphase Boundaries in Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetic shape memory (MSM) alloys, which transform martensitically below the Curie temperature in the ferromagnetic (FM) state, represent a new class of actuators. In Ni2MnGa, unusually large magnetic field-induced strains of about 10% have been observed. This effect is related to a high mobility of martensitic twin boundaries in connection with a large magneto-crystalline anisotropy. MSM materials exist in a variety of different martensitic structures depending on temperature and compositions. We investigate the energetics of L10 phase twin boundary motion quasi-statically with ab initio methods and relate the results to calculations of the magneto-crystalline anisotropy energy. Our results indicate that for the L10 structure the energy needed for a coherent shift of a twin boundary may be too large to be overcome solely by magnetic field-induced strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966

    Article  CAS  Google Scholar 

  2. Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746

    Article  CAS  Google Scholar 

  3. Söderberg O, Ge Y, Sozinov A, Hannula S-P, Lindroos VV (2005) Smart Mater Struct 14:223

    Article  Google Scholar 

  4. Entel P, Buchelnikov VD, Khovailo VV, Zayak AT, Adeagbo WA, Gruner ME, Herper HC, Wassermann EF (2006) J Phys D: Appl Phys 39:865

    Article  CAS  Google Scholar 

  5. Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A (2006) Phys Rev B 73:174413

    Article  Google Scholar 

  6. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B (2007) Phys Rev B 75:104414

    Article  Google Scholar 

  7. Chernenko V, Segui C, Cesari E, Pons J, Kokorin V (1998) Phys Rev B 57:2659

    Article  CAS  Google Scholar 

  8. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  9. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  10. Perdew JP, Burke K, Ernzerhoff M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  11. Koepernik K, Eschrig H (1999) Phys Rev B 59:1743

    Article  CAS  Google Scholar 

  12. Opahle I, Koepernik K, Eschrig H (1999) Phys Rev B 60:14035

    Article  CAS  Google Scholar 

  13. https://doi.org/www.fplo.de

  14. Eschrig H, Richter M, Opahle I (2004) In: Schwerdtfeger P (ed) Relativistic electronic structure theory, Part II. Applications, Vol. 14 of theoretical and computational chemistry, Elsevier, pp 723–776

  15. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  CAS  Google Scholar 

  16. Enkovaara J, Ayuela A, Nordström L, Nieminen RM (2002) Phys Rev B 65:134422

    Article  Google Scholar 

  17. Ayuela A, Enkovaara J, Nieminen RM (2002) J Phys: Condens Matter 14:5325

    CAS  Google Scholar 

  18. Zayak A, Entel P, Hafner J (2003) J Phys IV 112:985

    CAS  Google Scholar 

  19. James RD, Hane KF (2000) Acta Mater 48:197

    Article  CAS  Google Scholar 

  20. Bhattacharya K (2003) Microstructure of martensite—why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    Google Scholar 

  21. Pitteri M, Zanzotto G (2003) Continuum models for phase transitions and twinning in crystals. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  22. Ball JM, James RD (1987) Arch Rat Mech Anal 100:13

    Article  Google Scholar 

  23. Bain EC (1926) Trans AIME 70:25

    Google Scholar 

  24. Pond RC, Celotto S (2003) Int Mater Rev 48:225

    Article  CAS  Google Scholar 

  25. Kakeshita T, Fukuda T, Takeuchi T (2006) Mater Sci Eng A 438–440:12

    Article  Google Scholar 

  26. Okamoto N, Fukuda T, Kakeshita T, Takeuchi T (2006) Mater Sci Eng A 438–440:948

    Article  Google Scholar 

  27. Kakeshita T, Fukuda T (2006) Int J Appl Electrom 23:45

    Google Scholar 

  28. Kokalj A (2003) Comp Mater Sci 28:155; https://doi.org/www.xcrysden.org

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank U. K. Rößler for helpful discussions and a careful proofreading of the manuscript. Large parts of the calculations were performed on the IBM Blue Gene/L supercomputer of the John von Neumann Institute for Computing at Forschungszentrum Jülich, Germany. We thank the local staff for their support and Dr Pascal Vezolle of IBM for his efforts in optimizing the VASP binary for the Blue Gene/L architecture. The atomistic visualizations in Fig. 5 were prepared using XCrySDen [28]. Financial support was granted by the Deutsche Forschungsgemeinschaft through the Priority Programme SPP1239, Change of microstructure and shape of solid materials by external magnetic fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus E. Gruner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruner, M.E., Entel, P., Opahle, I. et al. Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni2MnGa. J Mater Sci 43, 3825–3831 (2008). https://doi.org/10.1007/s10853-007-2291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2291-5

Keywords

Navigation