Skip to main content
Log in

Interlocking hexagons model for auxetic behaviour

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A 2D ‘Rough Particle’ model consisting of interlocking hexagons is reported. Analytical expressions for the in-plane Poisson’s ratios and Young’s moduli due to particle translation along the geometrically matched male and female interlocks are derived for the model. The dependency of the mechanical properties on each of the model (geometrical and stiffness) parameters is provided, and it is shown that the assembly of interlocking hexagons deforming by particle translation along the interlocks displays auxetic (negative Poisson’s ratio) behaviour. The model predictions are compared with experimental mechanical properties for auxetic polypropylene (PP) films and fibres. The model predicts the experimental Poisson’s ratio values very well (model: νxy =  −1.30, νyx =  −0.77; experiment (PP films): ν|| =  −1.12, \(\nu_{\bot} = -0.77\)). The model generally overestimates the Young’s moduli of the films, but is in reasonable agreement with the axial Young’s modulus of the fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC (1991) Nature 353:124

    Article  CAS  Google Scholar 

  2. Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties. Pergamon Press, Oxford

  3. Lakes RS (1987) Science 235:1038

    Article  CAS  Google Scholar 

  4. Alderson KL, Evans KE (1992) Polymer 33:4435

    Article  CAS  Google Scholar 

  5. Pickles AP, Alderson KL, Evans KE (1996) Polym Eng Sci 36:636

    Article  CAS  Google Scholar 

  6. Lees C, Vincent JEV, Hillerton JE (1991) Biomed Mater Eng 1:19

    CAS  Google Scholar 

  7. Yeganeh-Haeri Y, Weidner DJ, Parise JB (1992) Science 257:650

    Article  CAS  Google Scholar 

  8. Alderson KL, Pickles AP, Neale PJ, Evans KE (1994) Acta Metall Mater 42:2261

    Article  CAS  Google Scholar 

  9. Choi JB, Lakes RS (1996) Int J Fract 80:73

    Article  Google Scholar 

  10. Alderson KL, Webber RS, Mohammed UF, Murphy E, Evans KE (1997) Appl Acoust 50:23

    Article  Google Scholar 

  11. Evans KE (1990) Chem Ind 20:654

    Google Scholar 

  12. Caddock BD, Evans KE (1989) J Phys D: Appl Phys 22:1877

    Article  CAS  Google Scholar 

  13. Alderson KL, Webber RS, Kettle AP, Evans KE (2005) Polym Eng Sci 45:568

    Article  CAS  Google Scholar 

  14. Alderson KL, Alderson A, Webber RS, Evans KE (1998) J Mater Sci Lett 17:1415

    Article  CAS  Google Scholar 

  15. Alderson KL, Alderson A, Smart G, Simkins VR, Davies PJ (2002) Plast Rubb Compos 31:344

    Article  CAS  Google Scholar 

  16. Ravirala N, Alderson A, Alderson KL, Davies PJ (2005) Phys Stat Sol (b) 242:653

    Article  CAS  Google Scholar 

  17. Ravirala N, Alderson KL, Davies PJ, Simkins VR, Alderson A (2006) Textile Res J 76:540

    Article  CAS  Google Scholar 

  18. Ravirala N, Alderson A, Alderson KL, Davies PJ (2005) Polym Eng Sci 45:517

    Article  CAS  Google Scholar 

  19. Simkins VR, Alderson A, Davies PJ, Alderson KL (2005) J Mater Sci 40:4355. DOI: 10.1007/s10853-005-2829-3

    Google Scholar 

  20. Evans KE, Alderson A (2000) Adv Mater 12:617

    Article  CAS  Google Scholar 

  21. Moyers R (1992) US Patent No. 5108413

  22. Stott PJ, Mitchell R, Alderson K, Alderson A (2000) Mater World 8:12

    CAS  Google Scholar 

  23. Alderson KL, Alderson A, Davies PJ, Smart G, Ravirala N, Simkins VR (2006) J Mater Sci (in press)

  24. Alderson A, Evans KE (1995) J Mater Sci 30:3319. DOI: 10.1007/BF00349875

    Google Scholar 

  25. Alderson A, Evans KE (1997) J Mater Sci 32:2797. DOI: 10.1023/A:1018660130501

    Google Scholar 

  26. Bathurst RJ, Rothenburg L (1988) Int J Eng Sci 26:373

    Article  Google Scholar 

  27. Wojciechowski KW (2004) In: Tokuyama M, Oppenheim I (eds) Slow dynamics of complex systems. AIP Proceedings

  28. Grima JN, Jackson R, Alderson A, Evans KE (2000) Adv Mater 12(24):1912

    Article  CAS  Google Scholar 

  29. Keskar NR, Chelikowsky JR (1992) Phys Rev B 46:1

    Article  CAS  Google Scholar 

  30. Grima JN, Evans KE (2000) Chem Commun 1531

  31. Grima JN, Evans KE (2000) J Mater Sci Lett 19:1563

    Article  CAS  Google Scholar 

  32. Ishibashi Y, Iwata MJ (2000) Phys Soc Jpn 69:2702

    Article  CAS  Google Scholar 

  33. Grima JN, Alderson A, Evans KE (2005) Phys Stat Sol (b) 242(3):561

    Article  CAS  Google Scholar 

  34. Alderson A, Evans KE (2002) Phys Rev Lett 89(22):225503-1

    Article  CAS  Google Scholar 

  35. Poulter DR (1963) The design of gas-cooled graphite-moderated reactors. Oxford University Press, London

  36. Muto K, Bailey RW, Mitchell KL (1963) Proc Inst Mech Eng 177:155

    Google Scholar 

  37. Alderson KL, Alderson A, Evans KE (1997) J Strain Anal 32:201

    Article  Google Scholar 

  38. Beatty MF, Stalnaker DO (1986) J Appl Mech 53:807

    Article  Google Scholar 

  39. Prall D, Lakes RS (1997) Int J Mech Sci 39:305

    Article  Google Scholar 

  40. Lempriere BM (1968) Am Inst Aeronaut Astronaut 6:2226

    Google Scholar 

  41. Wojciechowski KW (2003) J Phys A: Math Gen 36:11765

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alderson.

Appendix: derivation of aspect ratio of inscribed ellipse within an hexagonal cell

Appendix: derivation of aspect ratio of inscribed ellipse within an hexagonal cell

The inscribed ellipse touches the hexagonal cell edges at S and P (Fig. 4). Taking the origin of the xy co-ordinate system to be,

$$ O\equiv (0,0) $$
(A1)

the co-ordinates of the hexagonal cell corners Q and R are given by,

$$ Q\equiv (l_1 +l_2 \cos \alpha ,0) $$
(A2)
$$ R\equiv (\frac{l_1}{2},l_2 \sin \alpha) $$
(A3)

The equation of the inscribed ellipse is given by,

$$ \frac{x^{2}}{(A/2)^{2}}+\frac{y^{2}}{(B/2)^{2}}=1 $$
(A4)

where, A and B are the axes of the ellipse aligned along the x and y axes, respectively.

The coordinates of P can be defined in parametric form as,

$$ P\equiv \left (\frac{A}{2}\cos T,\frac{B}{2}\sin T \right) $$
(A5)

where, T is any arbitrary angle in space.

However, it is noted from Fig. 4 that B is equal to length SS′. Thus,

$$ B=SS^{\prime}=2l_2 \sin \alpha $$
(A6)

It can be observed from Fig. 4 that the slope of the tangent to the ellipse at P is equal to the slope of RQ. Hence,

$$ -\frac{B\cot T}{A}=-\tan \alpha $$
(A7)

Since the point P lies on the line QR, the slope of line RQ will be equal to the slope of QP. Thus,

$$-\tan \alpha =\frac{B\sin T}{A\cos T-l_1 -2l_2 \cos \alpha} $$
(A8)

Therefore, from Eqs. A6–A8, the aspect ratio of an ellipse inscribed in the hexagonal cell is,

$$ \frac{A}{B}=\frac{1}{2l_2 \sin \alpha}\sqrt{l_1^2 +4l_1 l_2 \cos \alpha} $$
(A9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravirala, N., Alderson, A. & Alderson, K.L. Interlocking hexagons model for auxetic behaviour. J Mater Sci 42, 7433–7445 (2007). https://doi.org/10.1007/s10853-007-1583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1583-0

Keywords

Navigation