Skip to main content
Log in

Nonlinear Spectral Analysis via One-Homogeneous Functionals: Overview and Future Prospects

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present in this paper the motivation and theory of nonlinear spectral representations, based on convex regularizing functionals. Some comparisons and analogies are drawn to the fields of signal processing, harmonic analysis, and sparse representations. The basic approach, main results, and initial applications are shown. A discussion of open problems and future directions concludes this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differ. Integral Equ. 14(3), 321–360 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Andreu, F., Caselles, V., Dıaz, J.I., Mazón, J.M.: Some qualitative properties for the total variation flow. J. Funct. Anal. 188(2), 516–547 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, Volume 147 of Applied Mathematical Sciences. Springer, New York (2002)

    MATH  Google Scholar 

  4. Aujol, J.-F., Gilboa, G., Papadakis, N.: Fundamentals of non-local total variation spectral theory. Scale Space and Variational Methods in Computer Vision, pp. 66–77. Springer, New York (2015)

    Google Scholar 

  5. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. JMIV 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bartels, S., Nochetto, R.H., Abner, J., Salgado, A.J.: Discrete total variation flows without regularization. arXiv preprint arXiv:1212.1137, (2012)

  7. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). J. Differ. Equ. 184(2), 475–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belloni, M., Ferone, V., Kawohl, B.: Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators. Z. Angew. Math. Phys. ZAMP 54(5), 771–783 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order TV methods—enhancement via Bregman iteration. J. Sci. Comput. 54, 269–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Methods Appl. Anal. 20(4), 295–334 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bresson, X., Laurent, T., Uminsky, D., Brecht, J.V.: Convergence and energy landscape for Cheeger cut clustering. Advances in Neural Information Processing Systems, pp. 1385–1393. MIT Press, Cambridge (2012)

    Google Scholar 

  13. Bresson, X., Szlam, A. D.: Total variation and Cheeger cuts. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 1039–1046 (2010)

  14. Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. Scale Space and Variational Methods in Computer Vision, pp. 16–27. Springer, New York (2015)

    Google Scholar 

  15. Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Model. Simul. 6(2), 366–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals, 2015. Submitted. Online at http://arxiv.org/pdf/1601.02912v1.pdf

  17. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4(1), 179–212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Burger, M., Moeller, M., Benning, M., Osher, S.: An adaptive inverse scale space method for compressed sensing. Math. Comput. 82, 269–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  20. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(3), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chui, C.K.: An Introduction to Wavelets, vol. 1. Academic press, Boston (1992)

    Book  MATH  Google Scholar 

  23. Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013)

    Article  Google Scholar 

  24. Darbon, J., Sigelle, M.: Image restoration with discrete constrained total variation part I: fast and exact optimization. J. Math. Imaging Vis. 26(3), 261–276 (2006)

    Article  MathSciNet  Google Scholar 

  25. Dorst, L., Van den Boomgaard, R.: Morphological signal processing and the slope transform. Signal Process. 38(1), 79–98 (1994)

    Article  Google Scholar 

  26. Duran, J., Moeller, M., Sbert, C., Cremers, D.: Collaborative total variation: A general framework for vectorial tv models. Submitted. http://arxiv.org/abs/1508.01308

  27. Eckardt, L.: Spektralzerlegung von bildern mit tv-methoden. Bachelor thesis, University of Münster (2014)

  28. Esedoglu, S., Osher, J.: Decomposition of images by the anisotropic Rudin–Osher–Fatemi model. Commun. Pure Appl. Math. 57(12), 1609–1626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giga, Y., Kohn, R.V.: Scale-invariant extinction time estimates for some singular diffusion equations. Hokkaido University Preprint Series in Mathematics, Sapporo (2010)

    MATH  Google Scholar 

  30. Gilboa, G.A.: A spectral approach to total variation. In: Kuijper, A., et al. (eds.) SSVM 2013. Lecture notes in computer science. Springer, New York (2013)

    Google Scholar 

  31. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gilles, J.: Multiscale texture separation. Multiscale Model. Simul. 10(4), 1409–1427 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. Advances in Neural Information Processing Systems, pp. 847–855. Kaufmann Publishers, San Mateo (2010)

    Google Scholar 

  35. Hinterberger, W., Hintermüller, M., Kunisch, K., von Oehsen, M., Scherzer, O.: Tube methods for bv regularization. J. Math. Imaging Vis. 19, 219–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Horesh, D., Gilboa, G.: Multiscale texture orientation analysis using spectral total-variation decomposition. Scale Space and Variational Methods in Computer Visio, pp. 486–497. Springer, New York (2015)

    Google Scholar 

  37. Horesh, D., Gilboa, G.: Separation surfaces in the spectral TV domain for texture decomposition (2015). http://arxiv.org/abs/1511.04687

  38. Horesh, D.: Separation surfaces in the spectral TV domain for texture decomposition (2015). Master thesis, Technion

  39. Jost, L., Setzer, S., Hein, M.: Nonlinear eigenproblems in data analysis: Balanced graph cuts and the ratio DCA-Prox. Extraction of Quantifiable Information from Complex Systems, pp. 263–279. Springer, New York (2014)

    Google Scholar 

  40. Köthe, U.: Local appropriate scale in morphological scale-space. ECCV’96, pp. 219–228. Springer, New York (1996)

    Google Scholar 

  41. Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations (2001). The 15th Dean Jacquelines B. Lewis Memorial Lectures

  42. Moeller, M., Diebold, J., Gilboa, G., Cremers, D.: Learning nonlinear spectral filters for color image reconstruction. In: ICCV 2015 (2015)

  43. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. math. Fr. 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  44. Müller, J.: Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in pet, (2013). Ph.D. Thesis, Univ. Münster

  45. Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Papafitsoros, K., Bredies, K.: A study of the one dimensional total generalised variation regularisation problem. arXiv:1309.5900 (2013)

  47. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: Computer Vision, 2009 IEEE 12th International Conference on, pp. 1133–1140. IEEE, (2009)

  48. Pöschl, C., Scherzer, O.: Exact solutions of one-dimensional TGV. arXiv:1309.7152, (2013)

  49. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing, p. 1. Prentice-Hall Inc., Englewood Cliffs (1975)

    Google Scholar 

  50. Rangapuram, S. S., Hein, M.: Constrained 1-spectral clustering. arXiv:1505.06485 (2015)

  51. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Steidl, G., Weickert, J., Brox, T., Mrzek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J. Numer. Anal. 42(2), 686–713 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Szlam, A., Bresson, X.: A total variation-based graph clustering algorithm for Cheeger ratio cuts. UCLA CAM Report, pp. 09–68 (2009)

  54. Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV, L2) decompositions. SIAM Multiscale Model Simul. 2(4), 554–579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  56. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  57. Welk, M., Steidl, G., Weickert, J.: Locally analytic schemes: a link between diffusion filtering and wavelet shrinkage. Appl. Comput. Harmon. Anal. 24(2), 195–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yin, W., Goldfarb, D., Osher, S.: The total variation regularized \(\text{ l }\hat{}1\) model for multiscale decomposition. Multiscale Model. Simul. 6(1), 190–211 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

GG acknowledges support by the Israel Science Foundation (ISF), Grant 2097/15 and by the Magnet program of the OCS, Israel Ministry of Economy, in the framework of Omek Consortium. MB acknowledges support by ERC via Grant EU FP 7—ERC Consolidator Grant 615216 LifeInverse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Gilboa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilboa, G., Moeller, M. & Burger, M. Nonlinear Spectral Analysis via One-Homogeneous Functionals: Overview and Future Prospects. J Math Imaging Vis 56, 300–319 (2016). https://doi.org/10.1007/s10851-016-0665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0665-5

Keywords

Navigation