Skip to main content
Log in

On a System of Adaptive Coupled PDEs for Image Restoration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we consider a coupled system of partial differential equations (PDEs) based model for image restoration. Both the image and the edge variables are incorporated by coupling them into two different PDEs. It is shown that the initial-boundary value problem has global in time dissipative solutions (in a sense going back to P.-L. Lions), and several properties of these solutions are established. Some numerical examples are given to highlight the denoising nature of the proposed model along with some comparison results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. See e.g. [65, p. 153] on how \(\frac{1}{2}\) appears in (27).

  2. Unfortunately there is no universal guideline for choosing parameters in diffusion based schemes and maximum PSNR based selection is done by sweeping the parameter set thoroughly. The important parameter σ in smoothing kernel G σ is set σ=2 for all the schemes and experiments reported here. This parameter needs to be increased if the noise level σ n is higher.

  3. Code available at http://ece.uwaterloo.ca/~z70wang/research/ssim/.

  4. Image courtesy of J. Portilla and available online at http://decsai.ugr.es/~javier/denoise/barbara.png.

  5. Image courtesy of MIT.

  6. Available at http://sipi.usc.edu/database/.

  7. http://sites.google.com/site/suryaiit/research/aniso.

  8. Image courtesy of UCF CVPR Group and available online at http://marathon.csee.usf.edu/edge/edge_detection.html.

  9. Implemented using the MATLAB command edge(u 0, ‘canny’, σ).

References

  1. Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. J. Math. Imaging Vis. 11(1), 5–26 (1999). doi:10.1023/A:1008318126505

    Article  MathSciNet  Google Scholar 

  2. Sochen, N., Kimmel, R., Bruckstein, A.M.: Diffusions and confusions in signal and image processing. J. Math. Imaging Vis. 14(3), 195–209 (2001). doi:10.1023/A:1011277827470

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equation and Calculus of Variations. Springer, New York (2006)

    Google Scholar 

  4. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). doi:10.1109/34.56205

    Article  Google Scholar 

  5. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). doi:10.1016/0167-2789(92)90242-F

    Article  MATH  Google Scholar 

  6. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997). doi:10.1007/s002110050258

    Article  MATH  MathSciNet  Google Scholar 

  7. Tsai, Y.-H.R., Osher, S.: Total variation and level set methods in image science. Acta Numer. 14, 509–573 (2005). doi:10.1017/S0962492904000273

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldstein, T., Osher, S.: The split Bregman algorithm for L1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009). doi:10.1137/080725891

    Article  MATH  MathSciNet  Google Scholar 

  9. Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990). doi:10.1137/0727053

    Article  MATH  Google Scholar 

  10. Alveraz, L., Mazzora, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994). doi:10.1137/0731032

    Article  MathSciNet  Google Scholar 

  11. Wei, G.W.: Generalized Perona–Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999). doi:10.1109/97.769359

    Article  Google Scholar 

  12. You, Y.-L., Kaveh, M.: Fourth–order partial differential equation for noise removal. IEEE Trans. Image Process. 9, 1723–1730 (2000). doi:10.1109/83.869184

    Article  MATH  MathSciNet  Google Scholar 

  13. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000). doi:10.1137/S1064827598344169

    Article  MATH  MathSciNet  Google Scholar 

  14. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003). doi:10.1109/TIP.2003.819229

    Article  Google Scholar 

  15. Greer, J.B., Bertozzi, A.L.: Traveling wave solutions of fourth order PDEs for image processing. SIAM J. Math. Anal. 36(1), 36–68 (2004). doi:10.1137/S0036141003427373

    Article  MathSciNet  Google Scholar 

  16. Rajan, J., Kannan, K., Kaimal, M.R.: An improved hybrid model for molecular image denoising. J. Math. Imaging Vis. 31(1), 73–79 (2008). doi:10.1007/s10851-008-0067-4

    Article  MathSciNet  Google Scholar 

  17. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35(3), 208–226 (2009). doi:10.1007/s10851-009-0166-x

    Article  MathSciNet  Google Scholar 

  18. Guidotti, P., Longo, K.: Two enhanced fourth order diffusion models for image denoising. J. Math. Imaging Vis. 40(2), 188–198 (2011). doi:10.1007/s10851-010-0256-9

    Article  MATH  MathSciNet  Google Scholar 

  19. Blomgren, P., Chan, T.F., Mulet, P., Wang, C.K.: Total variation image restoration: numerical methods and extensions. In: IEEE International Conference on Image Processing (ICIP), Santa Barbara, CA, USA, pp. 384–387 (1997). doi:10.1109/ICIP.1997.632128

    Google Scholar 

  20. Lysaker, M., Tai, X.C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006). doi:10.1007/s11263-005-3219-7

    Article  Google Scholar 

  21. Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007). doi:10.1016/j.jvcir.2007.04.005

    Article  Google Scholar 

  22. Cao, Y., Yin, J., Liu, Q., Li, M.: A class of nonlinear parabolic-hyperbolic equations applied to image restoration. Nonlinear Anal., Real World Appl. 11(1), 253–261 (2010). doi:10.1016/j.nonrwa.2008.11.004

    Article  MATH  MathSciNet  Google Scholar 

  23. Tadmor, E., Athavale, P.: Multiscale image representation using novel integro-differential equations. Inverse Probl. Theor. Imaging 3(4), 693–710 (2009). doi:10.3934/ipi.2009.3.693

    Article  MATH  MathSciNet  Google Scholar 

  24. Guidotti, P.: A new nonlocal nonlinear diffusion of image processing. J. Differ. Equ. 246(12), 4731–4742 (2009). doi:10.1016/j.jde.2009.03.017

    Article  MATH  MathSciNet  Google Scholar 

  25. Guidotti, P.: A new well-posed nonlinear nonlocal diffusion. Nonlinear Anal. 72(12), 4625–4637 (2010). doi:10.1016/j.na.2010.02.040

    Article  MATH  MathSciNet  Google Scholar 

  26. Guidotti, P., Lambers, J.: Two new nonlinear nonlocal diffusions for noise reduction. J. Math. Imaging Vis. 33(1), 25–37 (2009). doi:10.1007/s10851-008-0108-z

    Article  MathSciNet  Google Scholar 

  27. Janev, M., Pilipovic, S., Atanackovic, T., Obradovic, R., Ralevic, N.: Fully fractional anisotropic diffusion for image denoising. Math. Comput. Model. 54(1–2), 729–741 (2011). doi:10.1016/j.mcm.2011.03.017

    Article  MATH  MathSciNet  Google Scholar 

  28. Catte, V., Lions, P.L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992). doi:10.1137/0729012

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, Y., Wunderli, T.: Adaptive total variation for image restoration in BV space. J. Math. Anal. Appl. 272(3), 117–137 (2002). doi:10.1016/S0022-247X(02)00141-5

    Article  MATH  MathSciNet  Google Scholar 

  30. Shi, Y., Chang, Q.: New time dependent model for image restoration. Appl. Math. Comput. 179(1), 121–134 (2006). doi:10.1016/j.amc.2005.11.085

    Article  MATH  MathSciNet  Google Scholar 

  31. Barbu, T., Barbu, V., Biga, V., Coca, D.: A PDE variational approach to image denoising and restoration. Nonlinear Anal., Real World Appl. 10(3), 1351–1361 (2009). doi:10.1016/j.nonrwa.2008.01.017

    Article  MATH  MathSciNet  Google Scholar 

  32. Prasath, V.B.S., Singh, A.: Well-posed inhomogeneous nonlinear diffusion scheme for digital image denoising. J. Appl. Math. 2010, 763847 (2010), 14 pp. doi:10.1155/2010/763847

    Google Scholar 

  33. Prasath, V.B.S., Singh, A.: An adaptive anisotropic diffusion scheme for image restoration and selective smoothing. Int. J. Image Graph. 12(1), 18 (2012). doi:10.1142/S0219467812500039

    Article  Google Scholar 

  34. Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 826–833 (1992). doi:10.1109/34.149593

    Article  Google Scholar 

  35. Teboul, S., Blane, L., Aubert, G., Barlaud, M.: Variational approach for edge preserving regularization using coupled PDEs. IEEE Trans. Image Process. 7(3), 387–397 (1998). doi:10.1109/83.661189

    Article  Google Scholar 

  36. Cottet, G.-H., El Ayyadi, M.: A Volterra type model for image processing. IEEE Trans. Image Process. 7(3), 292–303 (1998). doi:10.1109/83.661179

    Article  Google Scholar 

  37. Caselles, V., Sapiro, G., Chung, D.H.: Vector median filters, inf-sup operations, and coupled PDE’s: theoretical connections. J. Math. Imaging Vis. 12(2), 109–119 (2000). doi:10.1023/A:1008310305351

    Article  MATH  MathSciNet  Google Scholar 

  38. Chen, Y., Barcelos, C.A.Z., Mair, B.A.: Smoothing and edge detection by time-varying coupled nonlinear diffusion equations. Comput. Vis. Image Underst. 82(2), 85–100 (2001). doi:10.1006/cviu.2001.0903

    Article  MATH  Google Scholar 

  39. Chen, Y., Bose, P.: On the incorporation of time-delay regularization into curvature-based diffusion. J. Math. Imaging Vis. 14(2), 149–164 (2001). doi:10.1023/A:1011211315825

    Article  MathSciNet  Google Scholar 

  40. Wei, G.W., Jia, Y.Q.: Synchronization-based image edge detection. Europhys. Lett. 59(6), 814–819 (2002). doi:10.1209/epl/i2002-00115-8

    Article  Google Scholar 

  41. Chen, Y., Levine, S.E.: Image recovery via diffusion tensor and time-delay regularization. J. Vis. Commun. Image Represent. 13(1–2), 156–175 (2002). doi:10.1006/jvci.2001.0497

    Article  Google Scholar 

  42. Belahmidi, A., Chambolle, A.: Time-delay regularization of anisotropic diffusion and image processing. Math. Model. Numer. Anal. 39(2), 231–251 (2005). doi:10.1051/m2an:2005010

    Article  MATH  MathSciNet  Google Scholar 

  43. Luo, H., Zhu, L., Ding, H.: Coupled anisotropic diffusion for image selective smoothing. Signal Process. 86, 1728–1736 (2006). doi:10.1016/j.sigpro.2005.09.019

    Article  MATH  Google Scholar 

  44. Amann, H.: Time-delayed Perona-Malik type problems. Acta Math. Univ. Comen. LXXVI(1), 15–38 (2007)

    MathSciNet  Google Scholar 

  45. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984). doi:10.1109/TPAMI.1984.4767596

    Article  MATH  Google Scholar 

  46. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997). doi:10.1109/83.551699

    Article  Google Scholar 

  47. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989). doi:10.1002/cpa.3160420503

    Article  MATH  MathSciNet  Google Scholar 

  48. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990). doi:10.1002/cpa.3160430805

    Article  MATH  MathSciNet  Google Scholar 

  49. Erdem, E., Tari, S.: Mumford-Shah regularizer with contextual feedback. J. Math. Imaging Vis. 33(1), 67–84 (2009). doi:10.1007/s10851-008-0109-y

    Article  MathSciNet  Google Scholar 

  50. Ceccarelli, M.: A finite Markov random field approach to fast edge-preserving image recovery. Image Vis. Comput. 25(6), 792–804 (2007). doi:10.1016/j.imavis.2006.05.021

    Article  Google Scholar 

  51. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tapen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008). doi:10.1109/TPAMI.2007.70844

    Article  Google Scholar 

  52. Lions, P.-L.: Incompressible models. In: Mathematical Topics in Fluid Mechanics, vol. 1. Oxford Lecture Series in Mathematics and Its Applications. Clarendon, Oxford (1996)

    Google Scholar 

  53. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II. J. Math. Kyoto Univ. 34(2), 391–427, 429–461 (1994)

    MATH  MathSciNet  Google Scholar 

  54. Gamba, I.M., Panferov, V., Villani, C.: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Ration. Mech. Anal. 194(1), 253–282 (2009). doi:10.1007/s00205-009-0250-9

    Article  MATH  MathSciNet  Google Scholar 

  55. Wu, J.: Analytic results related to magneto-hydrodynamic turbulence. Physica D 136(3–4), 353–372 (2000). doi:10.1016/S0167-2789(99)00158-X

    Article  MATH  MathSciNet  Google Scholar 

  56. Arsenio, D., Saint-Raymond, L.: Maxwell’s equations and the Lorentz force (2011). www.math.univ-toulouse.fr/berestycki2011/Talks/Saint-Raymond.pdf

  57. Vorotnikov, D.: Global generalized solutions for Maxwell-alpha and Euler-alpha equations. Nonlinearity 25(2), 309–327 (2012). doi:10.1088/0951-7715/25/2/309

    Article  MATH  MathSciNet  Google Scholar 

  58. Vorotnikov, D.A.: Dissipative solutions for equations of viscoelastic diffusion in polymers. J. Math. Anal. Appl. 339(2), 876–888 (2008). doi:10.1016/j.jmaa.2007.07.048

    Article  MATH  MathSciNet  Google Scholar 

  59. Koenderink, J.J.: The structure of images. Biol. Cybern. 50(5), 363–370 (1984). doi:10.1007/BF00336961

    Article  MATH  MathSciNet  Google Scholar 

  60. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly textured images by spatially varying constraints. IEEE Trans. Image Process. 15(8), 2281–2289 (2006). doi:10.1109/TIP.2006.875247

    Article  Google Scholar 

  61. Nordstrom, K.N.: Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection. Image Vis. Comput. 8(4), 318–327 (1990). doi:10.1016/0262-8856(90)80008-H

    Article  Google Scholar 

  62. Adams, R.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    MATH  Google Scholar 

  63. Belahmidi, A.: Solvability of a coupled system arising in image and signal processing. Afr. Diaspora J. Math. 3(1), 45–61 (2005)

    MathSciNet  Google Scholar 

  64. Temam, R.: Navier-Stokes Equations, Revised Edn.. Studies in Mathematics and Its Applications, vol. 2. North-Holland, Amsterdam (1979). Theory and numerical analysis, with an appendix by F. Thomasset

    Google Scholar 

  65. Zvyagin, V.G., Vorotnikov, D.A.: Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics. de Gruyter Series in Nonlinear Analysis and Applications, vol. 12. de Gruyter, Berlin (2008)

    Book  MATH  Google Scholar 

  66. Simon, J.: Compact sets in the space L p(0,T;B). Ann Mat. Pura Appl. 146, 65–96 (1987). doi:10.1007/BF01762360

    Article  MATH  MathSciNet  Google Scholar 

  67. Krasnosel’skii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon, Elmsford (1964). Translated by A. H. Armstrong; translation edited by J. Burlak

    Google Scholar 

  68. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (2010)

    MATH  Google Scholar 

  69. Weickert, J., Romeny, B.M.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998). doi:10.1109/83.661190

    Article  Google Scholar 

  70. Li, X., Chen, T.: Nonlinear diffusion with multiple edginess thresholds. Pattern Recognit. 27(8), 1029–1037 (1994). doi:10.1016/0031-3203(94)90142-2

    Article  Google Scholar 

  71. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). doi:10.1109/TIP.2003.819861. http://ece.uwaterloo.ca/~z70wang/research/ssim/

    Article  Google Scholar 

  72. Dong, Y., Hintermuller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011). doi:10.1007/s10851-010-0248-9

    Article  MATH  MathSciNet  Google Scholar 

  73. Buades, A., Coll, B., Morel, J.M.: A review of image denoising methods, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2006). doi:10.1137/040616024

    Article  MathSciNet  Google Scholar 

  74. Pizarro, L., Mrazek, P., Didas, S., Grewenig, S., Weickert, J.: Generalised nonlocal image smoothing. Int. J. Comput. Vis. 90(1), 62–87 (2010). doi:10.1007/s11263-010-0337-7

    Article  MathSciNet  Google Scholar 

  75. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). doi:10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  76. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms and parameter selection. Int. J. Comput. Vis. 67(1), 111–136 (2006). doi:10.1007/s11263-006-4331-z

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Fields Institute, Toronto, Canada for their great hospitality during the work on this article. The authors are grateful to the referees for the constructive remarks which led to improvements in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Surya Prasath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasath, V.B.S., Vorotnikov, D. On a System of Adaptive Coupled PDEs for Image Restoration. J Math Imaging Vis 48, 35–52 (2014). https://doi.org/10.1007/s10851-012-0386-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0386-3

Keywords

Navigation