Skip to main content
Log in

Design, synthesis and characterization of quinoline–pyrimidine linked calix[4]arene scaffolds as anti-malarial agents

  • Short Communication
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we report a series of quinoline-pyrimidine linked calix[4]arene derivatives functionalized with 8-amino quinoline, 5-amino quinoline, 8-hydroxy quinoline, 2-amino pyrimidine and 4-amino 3-methyl quinoline. The synthesized compounds were purified and characterized by elemental analysis, FT-IR, 1H NMR and ESI-MS and screened for their anti-malarial activity against plasmodium falciparum strains. Two synthesized compounds with 8-hydroxy quinoline and 2-amino pyrimidine substituents showed good antimalarial activity with IC50 0.073 and 0.043 µg/ml respectively which is comparable with the standard drug chloroquine. The present study provides valuable information for developing calix[4]arene conjugates quinoline-pyrimidine based derivatives as an effective antimalarial agents.

Graphical Abstract

In this paper, we report a series of quinoline-pyrimidine linked calix [4]arenes derivatives functionalised with 8-amino quinoline, 5-amino quinoline, 8-hydroxy quinoline, 2- amino pyrimidine and 4-amino 3-methyl quinoline and screened for antimalarial activity. Two synthesized compounds with 8-hydroxy quinoline and 2-amino pyrimidine substituents showed good antimalarial activity with IC50 0.073 and 0.043 µg/mL respectively, which is comparable with the standard drug chloroquine. The present study provides valuable information for developing calix[4]arene conjugates quinoline-pyrimidine derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Rodik, R.V., Boyko, V.I., Kalchenko, V.I.: Calixarenes in bio-medical researches. Curr. Med. Chem. 16, 1630–1655 (2009)

    Article  CAS  Google Scholar 

  2. Hwang, K.M., Qi, Y.M., Liu, S.Y.: Method of treating viral infections with aryl macrocyclic compounds. Patent, US5312837 (1994)

  3. Casnati, A., Fabbi, M., Pelizzi, N., Pochini, A., Francgesco, S., Ungaro, R., di Modugno, E., Tarzia, G.: Synthesis, antimicrobial activity and binding properties of calix[4]arene based vancomycin mimics. Bioorg. Med. Chem. Lett. 6, 2699–2704 (1996)

    Article  CAS  Google Scholar 

  4. Hart, P.D., Armstrong, J.A., Brodaty, E.: Calixarenes with host-mediated potency in experimental tuberculosis: further evidence that macrophage lipids are involved in their mechanism of action. Infect. Immun. 64, 1491–1493 (1996)

    CAS  Google Scholar 

  5. Fujimoto, K., Miyata, T., Aoyama, Y.: Saccharide-directed cell recognition and molecular delivery using macrocyclic saccharide clusters: masking of hydrophobicity to enhance the saccharide specificity. J. Am. Chem. Soc. 122, 3558–3559 (2000)

    Article  CAS  Google Scholar 

  6. Menger, F.M., Bian, J., Sizova, E., Martinson, D.E., Seredyuk, V.A.: Bolaforms with fourteen galactose units: a proposed site-directed cohesion of cancer cells. Org. Lett. 6(2), 261–264 (2004)

    Article  CAS  Google Scholar 

  7. Yousaf, A., Hamid, S.A., Bunnori, N.M., Ishola, A.A.: Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Des. Dev. Ther. 9, 2831–2838 (2015)

    Google Scholar 

  8. de Fátima, A., Fernandes, S.A., Sabino, A.A.: Calixarenes as new platforms for drug design. Curr. Drug Discov. Technol. 6, 151–170 (2009)

    Article  Google Scholar 

  9. World Malaria Report 2014: World Health Organization, Geneva (2014)

  10. World Malaria Report 2013: World Health Organization, Geneva (2013)

  11. Rosario, V.E.: Genetics of chloroquine resistance in malaria parasites. Nature 261, 585–586 (1976)

    Article  CAS  Google Scholar 

  12. Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., Lwin, K.M., Ariey, F., Hanpithakpong, W., Lee, S.J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S.S., Yeung, S., Singhasivanon, P., Day, N.P., Lindegardh, N., Socheat, D., White, N.J.: Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009)

    Article  CAS  Google Scholar 

  13. Noedl, H., Se, Y., Schaecher, K., Smith, B.L., Socheat, D., Fukuda, M.M.: Evidence of artemisinin-resistant malaria in Western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008)

    Article  CAS  Google Scholar 

  14. Solomon, V.R., Haq, W., Srivastava, K., Puri, S.K., Katti, S.B.: Synthesis and antimalarial activity of side chain modified 4-aminoquinoline derivatives. J. Med. Chem. 50(2), 394–398 (2007)

    Article  CAS  Google Scholar 

  15. Tripathi, M., Khan, S.I., Thakur, A., Ponnan, P., Rawat, D.S.: 4-Aminoquinoline-pyrimidine-aminoalkanols: synthesis, in vitro antimalarial activity, docking studies and ADME predictions. New J. Chem. 39, 3474–3483 (2015)

    Article  CAS  Google Scholar 

  16. Wani, W.A., Jameel, E., Baig, U., Mumtazuddin, S., Hun, L.T.: Ferroquine and its derivatives: new generation of antimalarial agents. Eur. J. Med. Chem. 101, 534–551 (2015)

    Article  CAS  Google Scholar 

  17. Korotchenko, V., Sathunuru, R., Gerena, L., Caridha, D., Li, Q., Deitrick, M.K., Smith, P.L., Lin, A.J.: Antimalarial activity of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives. J. Med. Chem. 58(8), 3411–3431 (2015)

    Article  CAS  Google Scholar 

  18. Kumar, D., Khan, S.I., Ponnan, P., Rawat, D.S.: Triazine-pyrimidine based molecular hybrids: synthesis, docking studies and evaluation of antimalarial activity. New J. Chem. 38, 5087–5095 (2014)

    Article  CAS  Google Scholar 

  19. Pandey, S., Agarwal, P., Srivastava, K., Rajakumar, S., Puri, S.K., Verma, P., Saxena, J.K., Sharma, A., Lal, J., Chauhan, P.M.S.: Synthesis and bioevaluation of novel 4-aminoquinoline-tetrazole derivatives as potent antimalarial agents. Eur. J. Med. Chem. 66, 69–81 (2013)

    Article  CAS  Google Scholar 

  20. Patel, M.B., Modi, N.R., Raval, J.P., Menon, S.K.: Calix[4]arene based 1,3,4-oxadiazole and thiadiazole derivatives: design, synthesis and biological evaluation. Org. Biomol. Chem. 10, 1785–1794 (2012)

    Article  CAS  Google Scholar 

  21. Valand, N.N., Patel, M.B., Menon, S.K.: Curcumin-p-sulfonatocalix[4]resorcinarene (p-SC[4]R) interaction: thermo-physico chemistry, stability and biological evaluation. RSC Adv. 5, 8739–8752 (2015)

    Article  CAS  Google Scholar 

  22. Rieckmann, K.H., Campbell, G.H., Sax, L.J., Mrema, J.E.: Drug sensitivity of plasmodium falciparum: an in-vitro microtechnique. Lancet 1, 221–223 (1978)

    Google Scholar 

Download references

Acknowledgments

Nikunj N. Valand would like to acknowledge financial assistance from DST-New Delhi as Innovation in Science Pursuit for Inspire Research (INSPIRE) fellowship. The authors also acknowledge Microcare Laboratory, Surat for the antimalarial activity studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhana K. Menon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.B., Valand, N.N., Sutariya, P.G. et al. Design, synthesis and characterization of quinoline–pyrimidine linked calix[4]arene scaffolds as anti-malarial agents. J Incl Phenom Macrocycl Chem 84, 173–178 (2016). https://doi.org/10.1007/s10847-015-0581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0581-0

Keywords

Navigation