Skip to main content
Log in

Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A series of nonlinear optical chromophores with the strong electron-withdrawing tricyanopyrroline (TCP) acceptor and rigid-flexible dendron was synthesized and their thermal and optical properties were investigated. Modification of the TCP chromophore with rigid-flexible dendron groups provides reduction of dipole–dipole interactions and thus great improvement of the macroscopic electro-optic (EO) response of the polymeric materials obtained by incorporating these derivatives as a guest in a high Tg amorphous polycarbonate (APC). The best result was obtained with chromophore Lj-Dr1, with three rigid-flexible dendrons, which shows the largest EO activity (39 pm V−1 at 1,310 nm). Furthermore, all chromophores in this study possess good processability and exhibit high thermal decomposition temperatures (highest T d = 300 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kajzar, F., Lee, K.-S., Jen, A.K.-Y.: Polymeric materials and their orientation techniques for second-order nonlinear optics. Adv. Polym. Sci 161, 1 (2003)

    Article  CAS  Google Scholar 

  2. Shi, Y., Zhang, C., Zhang, H., Bechtel, J., Dalton, L.R., Robinson, B.H., Steier, W.H.: Low (sub-1 volt) halfwave voltage polymeric electro-optic modulators achieved. Science 288, 119 (2000)

    Article  CAS  Google Scholar 

  3. Lee, M., Katz, H.E., Erben, C., Gill, D.M., Gopalan, P., Heber, J.D., McGee, D.J.: Broadband modulation of light by using an electro-optic polymer. Science 298, 1401–1403 (2002)

    Article  CAS  Google Scholar 

  4. Dalton, L.R.: Nonlinear optical polymeric materials: from chromophore design to commercial applications. Adv. Polym. Sci. 158, 1–86 (2002)

    Article  CAS  Google Scholar 

  5. Sinyukov, A.M., Leahy, M.R., Haller, L.M., Luo, J.D., Jen, A.K.Y., Dalton, L.R.: Functional organic materials: syntheses, strategies and applications. Appl. Phys. Lett. 85, 5827–5829 (2004)

    Article  CAS  Google Scholar 

  6. Samyn, C., Verbiest, T., Persoons, A.: Second-order non-linear optical polymers. Macromol. Rapid Commun. 21, 1–15 (2000)

    Article  CAS  Google Scholar 

  7. Wurthner, F., Yao, S., Debaerdemaeker, T., Wortmann, R.: Dimerization of merocyanine dyes: structural and energetic characterization of dipolar dye aggregates and implications for nonlinear optical materials. J. Am. Chem. Soc. 124, 9431–9447 (2002)

    Article  Google Scholar 

  8. Wortmann, R., Rosch, U., Redi-Abshiro, M., Wurthner, F.: Large electric field effects on dipolar aggregation of merocyanine dyes. Angew. Chem. 42, 2080–2083 (2003)

    Article  CAS  Google Scholar 

  9. Dalton, L.R., Steier, W.H., Robinson, B.H., Zhang, C., Ren, A., Garner, S., Chen, A., Londergan, T., Irwin, L., Carlson, B., Fifield, L., Phelan, G., Kincaid, C., Amend, J., Jen, A.K.Y.: From molecules to opto-chips: organic electro-optic materials. J. Mater. Chem. 9, 1905–1920 (1999)

    Article  CAS  Google Scholar 

  10. Robinson, B.H., Dalton, L.R.: Monte Carlo statistical mechanical simulations of chromophore/polymer materials. J. Phys. Chem. A 104, 4785–4795 (2000)

    Article  CAS  Google Scholar 

  11. Nielsen, R.D., Rommel, H.L., Robinson, B.H.: Simulation of the loading parameter and soft lithography. J. Phys. Chem. B 108, 8659–8667 (2004)

    Article  CAS  Google Scholar 

  12. Harper, A.W., Sun, S., Dalton, L.R., Garner, S.M., Chen, A., Kalluri, S., Steier, W.H., Robinson, B.H.: Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore electrostatic interactions. J. Opt. Soc. Am. B 15, 329–337 (1998)

    Article  CAS  Google Scholar 

  13. Faccini, M., Balakrishnan, M., Diemeer, M.B.J., Hu, Z., Clays, K., Asselberghs, I., Leinse, A., Driessen, A., Reinhoudt, D.N., Verboom, W.: Enhanced poling efficiency in highly thermal and photostable nonlinear optical chromophores. J. Mater. Chem. 18, 2141–2149 (2008)

    Article  CAS  Google Scholar 

  14. Liu, J., Zhou, T., Qiu, L., Liu, X., Zhen, Z.: Synthesis and characterization of dendrimer encapsulated chromophoreby one step method for electrooptics. Optoelectron. Adv. Mater. Rapid Commun. 3, 921 (2009)

    CAS  Google Scholar 

  15. Jang, S.H., Luo, J., Tucker, N.M., Leclercq, A., Zojer, E., Haller, M.A., Kim, T.D., Kang, J.W., Firestone, K., Bale, D., Lao, D., Benedict, J.B., Cohen, D., Kaminsky, W., Kahr, B., Bredas, J.L., Reid, P., Dalton, L.R., Jen, A.K.Y.: Pyrroline chromophores for electro-optics. Chem. Mater. 18, 2982–2988 (2006)

    Article  CAS  Google Scholar 

  16. Dalton, L.R., Jen, A.K.Y., Steier, W., Robinson, B., Jang, S.H., Clot, O., Song, H.C., Kuo, Y.H., Zhang, C., Rabiei, P., Ahn, S.W., Oh, M.C.: Organic electro-optic materials: some unique opportunities. Proc. SPIE. 5351, 1–15 (2004)

    Article  CAS  Google Scholar 

  17. Dalton, L.R.: Organic electro-optic materials. Pure Appl. Chem. 76, 1421 (2004)

    Article  CAS  Google Scholar 

  18. He, M., Leslie, T.M., Sinicropi, J.A.: Synthesis of chromophores with extremely high electro-optic activity. 1. Thiophene-bridge-based chromophores. Chem. Mater. 14, 4662–4668 (2002)

    Article  CAS  Google Scholar 

  19. Hoang, M.H., Kim, M.H., Cho, M.J., Kim, K.H., Kim, K.N., Jin, J.I., Choi, D.H.: Dendronized tricyanopyrroline-based chromophores in nonlinear optical active host polymer. J. Polym. Sci. A. 46, 5064–5076 (2008)

    Article  CAS  Google Scholar 

  20. Lee, S.K., Cho, M.J., Jin, J.I., Choi, D.H.: Stability control of the electrooptic effect with new maleimide copolymers containing photoreactive tricyanopyrrolidene-based chromophores. J. Polym. Sci. A. 45, 531–542 (2006)

    Article  Google Scholar 

  21. Cheng, L.T., Tam, W., Stevenson, S.H., Meredith, G.R.: Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 95, 10631 (1991)

    Article  CAS  Google Scholar 

  22. Kim, J.J., Choi, H., Lee, J.W., Kang, M.S., Song, K., Kang, S.O., Ko, J.: A polymer gel electrolyte to achieve $6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore. J. Mater. Chem. 18, 5223 (2008)

    Article  CAS  Google Scholar 

  23. Asiri, A.M., Fatani, N.A.: Novel dyes derived from hydrazones. Part 4. Synthesis and characterizations of 2-{4-[(2E)-2-(1-arylylidene)hydrazino]phenyl}ethylene-1,1,2-tricarbonitrile. Dyes Pigments 72, 217 (2007)

    Article  CAS  Google Scholar 

  24. DeMartino, R.N., Choe, E.W., Khanarian, G., Haas, D., Leslie, T., Nelson, G.: Development of polymeric nonlinear optical materials. In: Prasad, P.N., Ulrich, D.R. (eds.) Nonlinear Optical and Electroactive Polymers, p. 169. Plenum Press, New York (1988)

    Google Scholar 

  25. Teng, C.C., Man, H.T.: Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Appl. Phys. Lett. 56, 1734 (1990)

    Article  CAS  Google Scholar 

  26. Cho, M.J., Lim, J.H., Hong, C.S., Kim, J.H., Lee, H.S., Choi, D.H.: A tricyanopyrroline-based nonlinear optical chromophore bearing a lateral moiety: a novel steric technique for enhancing the electro-optic effect. Dyes Pigments 79, 193 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Chinese Academy of Science Knowledge Innovation Project Key Direction Project foundation (KJCX2.HO2) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Bo, S., Liu, X. et al. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. J Incl Phenom Macrocycl Chem 68, 253–260 (2010). https://doi.org/10.1007/s10847-010-9781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9781-9

Keywords

Navigation