Skip to main content
Log in

Control of a Mobile Robot Subject to Wheel Slip

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Wheel slip is inevitable when a Wheeled Mobile Robot (WMR) is moving at a high speed or on a slippery surface. In particular, when neither lateral nor longitudinal slips can be ignored in the dynamic model, a WMR becomes an under-actuated nonlinear dynamic system. To study the maneuverability of a WMR in such a realistic environment, we model the overall WMR dynamics subject to wheel slip and propose control algorithms in regulation control and turning control tasks for the WMR. In regulation control, a time-invariant discontinuous feedback law is developed to asymptotically stabilize the system to the desired configuration with exponential convergence rate. In turning control, a sliding mode-based extremum seeking control technique is applied to achieve stable and sharp turning. Simulation results are presented to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Motte, I., Campion, I.: A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints. IEEE Trans. Robot. Autom. 16(6), 875–880 (2000)

    Article  Google Scholar 

  2. Lin, W.-S., Chang, L.-H., Yang, P.-C.: Adaptive critic anti-slip control of wheeled autonomous robot. Control Theory Appl. IET. 1(1), 51–57 (2007)

    Article  MathSciNet  Google Scholar 

  3. Tarokh, M., McDermott, G.J.: Kinematics modeling and analyses of articulated rover. IEEE Trans. Robot. 21(4), 539–553 (2005)

    Article  Google Scholar 

  4. Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Robust control of a mobile robot system with kinematic disturbance. In: IEEE Int. Conference on Control Applications, pp. 437–442 (2000)

  5. Zhang, Y., Chung, J.H., Velinsky, S.A.: Variable structure control of a differentially steered wheeled mobile robot. J. Intell. Robot. Syst. 36(3), 301–314 (2003)

    Article  Google Scholar 

  6. Michalek, M.M., Dutkiewicz, P., Kielczewski, M., Pazderski, D.: Vector-field-orientation tracking control for a mobile vehicle disturbed by the skid-slip phenomena. J. Intell. Robot. Syst. 59(304), 341–365 (2010)

    Article  MATH  Google Scholar 

  7. Balakrishna, R., Ghosal, A.: Modeling of slip for wheeled mobile robot. IEEE Trans. Robot. Autom. 11(1), 126–132 (1995)

    Article  Google Scholar 

  8. Jung, S., Hsia, T.C.: Explicit lateral force control of an autonomous mobile robot with slip. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS, pp. 388–393 (2005)

  9. Stonier, D., Se, H.C., Sung-Lok, C., Kuppuswamy, N.S., Jong-Hwan, K.: Nonlinear slip dynamics for an omni-wheel mobile robot platform. In: IEEE Int. Conf. on Robotics and Automation, pp. 2367–2372 (2007)

  10. Ploeg, J., Schouten, H.E., Nijmeijer, H.: Control design for a mobile robot including tire behavior. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 240–245. Eindhoven, The Netherlands, 4–6 June 2008

  11. Lagerberg, A., Egardt, B.: Backlash estimation with application to automotive powertrains. IEEE Trans. Control Syst. Technol. 15(3), 483–493 (2007)

    Article  Google Scholar 

  12. Verma, R., Vecchio, D., Fathy, H.: Development of a scaled vehicle with longitudinal dynamics of an HMMWV for an ITS testbed. IEEE/ASME Trans. Mechatron. 13(1), 46–57 (2008)

    Article  Google Scholar 

  13. Kyung-Ho, B.: Development of dynamics modeling in the vehicle simulator for road safety analysis. In: Annual Conference SICE07, pp. 649–653 (2007)

  14. Der-Chen, L., Wen-Ching, C.: Control design for vehicle’s lateral dynamics. In: IEEE Int. Conf. on Systems, Man and Cybernetics, ICSMC ’06, vol. 3, pp. 2081–2086 (2006)

  15. Reyhanoglu, M.: Exponential stabilization of an underactuated autonomous surface vessel. Automatica 33(12), 2249–2254 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Drakunov, S., Ozguner, U., Dix, P., Ashrafi, B.: ABS control using optimum search via sliding modes. IEEE Trans. Control Syst. Technol. 3(1), 79–85 (1995)

    Article  Google Scholar 

  17. Sidek, N.: Dynamic modeling and control of nonholonomic wheeled mobile robot subjected to wheel slip. Ph.D. thesis, Vanderbilt University, USA (2008)

  18. Ward, C.C., Iagnemma, K.: Model-based wheel slip detection for outdoor mobile robots. In: IEEE Int. Conf. on Robotics and Automation, pp. 2724–2729 (2007)

  19. Angelova, A., Matthies, L., Helmick, D.M., Sibley, G., Perona, P.: Learning to predict slip for ground robots. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3324–3331 (2006)

  20. Seyr, M., Jakubek S.: Proprioceptive navigation, slip estimation and slip control for autonomous wheeled mobile robot. In: IEEE Conf. on Robotics, Automation and Mechatronics, pp. 1–6 (2006)

  21. Germann, M., Wurtenberger, A., Daiss, A.: Monitoring of the friction coefficient between tyre and road surface. In: Proc. of the Third IEEE Conf. on Control Applications, pp. 613–618, 1 Aug 1994

  22. Li, L., Wang, F.Y.: Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control. IEEE Trans. Intell. Transp. Syst. 7(1), 1–9 (2006)

    Article  Google Scholar 

  23. Bakker, E., Nyborg, L., Pacejka, H.B.: Tire modeling for the use of the vehicle dynamics studies. SAE paper 870421 (1987)

  24. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robot. Syst. 14(3), 149–163 (1997)

    Article  MATH  Google Scholar 

  25. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nnholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  26. Jiang, Z.-P., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33(7), 1393–1399 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Do, K.D., Jiang, Z.-P., Pan, J.: A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots. IEEE Trans. Robot. Autom. 20(3), 589–594 (2004)

    Article  Google Scholar 

  28. Mazenc, F., Pettersen, K., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel. IEEE Trans. Autom. Control. 47(10), 1759–1762 (2002)

    Article  MathSciNet  Google Scholar 

  29. Dong, W., Guo, Y.: Global time-varying stabilization of underactuated surface vessel. IEEE Trans. Autom. Control 50(6), 859–864 (2005)

    Article  MathSciNet  Google Scholar 

  30. Ghommam, J., Mnif, F., Benali, A., Derbel, N.: Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Trans. Control Syst. Technol. 14(6), 1150–1157 (2006)

    Article  Google Scholar 

  31. Behal, A., Dawson, D.M., Dixon, W.E., Fang, Y.: Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control. 47(3), 495–500 (2002)

    Article  MathSciNet  Google Scholar 

  32. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  33. Tian, Y., Sarkar, N.: Near-optimal autonomous pursuit evasion for nonholonomic wheeled mobile robot subject to wheel slip. In: IEEE International Conference on Robotics and Automation, pp. 4946–4951. Anchorage, USA (2010)

  34. Yu, H., Ozguner, U.: Extremum-seeking control stragegy for ABS system with time delay. Proc. Am. Control Conf. 5, 3753–3758 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Sarkar, N. Control of a Mobile Robot Subject to Wheel Slip. J Intell Robot Syst 74, 915–929 (2014). https://doi.org/10.1007/s10846-013-9871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9871-1

Keywords

Navigation