Skip to main content

Advertisement

Log in

Restore it, and they will come: trap-nesting bee and wasp communities (Hymenoptera: Aculeata) are recovered by restoration of riparian forests

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Riparian forests have been greatly affected by anthropogenic actions with formerly continuous riparian forests being slowly converted into small and isolated patches. Riparian forests are extremely important habitats for many groups of insects, including bees and wasps, because they are sources of shelter and food for them and their offspring. There is a growing body of evidence of success in the restoration of riparian forest plant communities; however, little research has been done on the associated invertebrate communities. We test whether restoring plant communities is sufficient for restoring the taxonomic composition of trap-nesting bees and wasps and which functional traits are favored in different sites. We predict that species richness, abundance, and community composition of trap-nesting bees and wasps of riparian sites undergoing restoration will converge on the “target” of a reference site with increasing time, since restoration increases habitat complexity. We also predict that the width of restored patches will also influence the species richness, abundance and community composition of trap-nesting bees and wasps. Bee richness and abundance, and wasp richness, were strongly related to fragment width, but not to age since restoration. Our results indicate that although restored sites are relatively small and scattered in a fragmented landscape, they provide suitable habitat for re-colonization by community assemblages of trap-nesting bees and wasps and the traits selected captured the responses to the habitat restoration. Hence, restored riparian areas can be considered important habitats for invertebrates, thus contributing to an increase in local biodiversity and, possibly, the restoration of some of the ecosystem services they originally provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguiar AJC, Martins CF (2002) Abelhas e vespas solitárias em ninhos-armadilha na Reserva Biológica Guaribas (Mamanguape, Paraíba, Brasil). Revista Brasileira de Zoologia 19:101–116

    Article  Google Scholar 

  • Aguiar CML, Garófalo CA, Almeida GF (2005) Abelhas (Hymenoptera, Apoidea) que nidificam em ninhos-armadilha em áreas de floresta semi-decídua e caatinga, Bahia, Brasil. Revista Brasileira de Zoologia 22:1030–1038

    Article  Google Scholar 

  • Álvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Anderson DM (1997) Bloom dynamics of toxic Alexandrium species in the northeastern U.S, Limnology and Oceanography. https://doi.org/10.4319/lo.1997.42.5_part_2.1009

  • Antonini Y, Martins RP, Aguiar LM, Loyola RD (2012) Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban Ecosystems 16:527–541. https://doi.org/10.1007/s11252-012-0281-0

    Article  Google Scholar 

  • Antonini Y, Silveira RA, Oliveira M, Martins C, Oliveira R (2016) Orchid bee fauna responds to habitat complexity on a savanna area (Cerrado) in Brazil. Sociobiology 63(2):819–825

    Article  Google Scholar 

  • Araujo GJ, Antonini Y (2016) Hoteis da floresta: cavidades naturais e a sobrevivência de espécies. Ciência Hoje 336:28–31

    Google Scholar 

  • Araujo GJ, Fagundes R, Antonini Y (2017) Trap-nesting hymenoptera and their network with parasites in recovered Riparian forests Brazil. Neotrop Entomol. https://doi.org/10.1007/s13744-017-0504-4

    Article  PubMed  Google Scholar 

  • Audino LD, Louzada J, Comita L (2014) Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biol Cons 169:248–257

    Article  Google Scholar 

  • Barela JA, Godoi D, Freitas PB, Polastri PF (2000) Visual information and body sway coupling in infants during sitting acquisition. Infant Behav Dev 23:285–297

    Article  Google Scholar 

  • Bennett AF (2003) Linkages in the Landscape: the role of corridors and connectivity in wildlife conservation. IUCN—The World Conservation, Gland

    Book  Google Scholar 

  • Bohart RM, Menke AS (1976) Sphecid wasps of the world: a generic revision. University of California Press, Berkeley

    Google Scholar 

  • Brown KS, Hutchings RW (1997) Disturbance, fragmentation, and the dynamics of diversity in Amazonian forest butterflies. In: Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago

    Google Scholar 

  • Bukovinszky T. Rikken I, Evers S, Wäckers FL, Biesmeijer JC, Prins HHT, Kleijn D (2017) Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic Appl Ecol 18:21–30

    Article  Google Scholar 

  • Buschini MLT (2005) Species diversity and community structure in trap-nesting bee in Southern Brazil. Apidologie 37:58–66

    Article  Google Scholar 

  • Camillo E, Garófalo CA, Serrano JC, Mucillo G (1995) Diversidade e abundância sazonal de abelhas e vespas solitárias em ninhos-armadilhas (Hymenoptera: Apocrita: Aculeata). Revista Brasileira de Entomologia 39:459–470

    Google Scholar 

  • Cane JH, Minckley R, Roulston T, Kervin L, Williams NM (2006) Multiple response of desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol Appl 16:632–644

    Article  PubMed  Google Scholar 

  • Carvalho SM (2011) Diversidade de abelhas e vespas solitárias (Hymenoptera, Apoidea) que nidificam em ninhos-armadilhas disponibilizados em áreas de Cerrado em fragmentos próximos de Mata Estacional Semidecidual—MG. Dissertation, Universidade Federal de Uberlândia

  • Crabb P (1997) Impacts of anthropogenic activities, water use and consumption on water resources and flooding. Central Queenslad University Publishing Unit, Rockhampton

    Google Scholar 

  • Cristescu RH, Frere C, Banks PB (2012) A review of fauna in mine rehabilitation in Australia: current state and future directions. Biol Cons 149:60–72

    Article  Google Scholar 

  • D’Astous A, Poulin M, Aubin I, Rochefort L (2013) Using functional diversity as an indicator of restoration success of a cut-over bog. Ecol Eng 61:519–526

    Article  Google Scholar 

  • Dixon KW (2009) Pollination and restoration. Science 325:571–573

    Article  PubMed  CAS  Google Scholar 

  • Dorval A, Peres Filho O, Marques EM (2004) Levantamento de Scolytidae (Coleoptera) em plantações de Eucalyptus spp.em Cuiabá, Estado de Mato Grosso. Ciência Florestal 14:47–58

    Article  Google Scholar 

  • Evans HE, Eberhard MJW (1970) The wasps. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Ferreira DAC, Dias HCT (2004) Situação da mata ciliar do ribeirão são Bartolomeu em Viçosa, MG. Revista Árvore 28:617–623

    Article  Google Scholar 

  • Flores LMA, Zanette LRS, Araujo FS (2017) Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodivers Conserv. https://doi.org/10.1007/s10531-017-1436-3

    Article  Google Scholar 

  • Fye RE (1972) The effect of forest disturbances on populations wasps and bees in Northwestern Ontario (Hymenoptera: Aculeata). Can Entomol 104:1623–1633

    Article  Google Scholar 

  • Gámez-Virués S, Perovic DJ, Gossner MM, Börschig C et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun. https://doi.org/10.1038/ncomms9568

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilliam FS (2002) Effects of harvesting on herbaceous layer diversity of a central Appalachian hardwood forest in West Virginia, USA. For Ecol Manag 155:33–43

    Article  Google Scholar 

  • Gonçalves JLM, Nogueira Júnior LR, Ducatti F (2003) Recuperação de solos degradados. In: Kageyma PY, Oliveira RE, Moraes LFD, Engel VL, Gandara FB (eds) Restauração ecológica de ecossistemas naturais. Fundação de Estudos e Pesquisas Agrícolas e Florestais, Botucatu, pp 111–163

    Google Scholar 

  • Goulet H, Huber JT (1993) Hymenoptera of the World: an identification guide to families. Agriculture Canada Publication, Ottawa

    Google Scholar 

  • Grimbacher PS, Catterall CP, Kanowski J, Proctor HC (2007) Responses of ground-active beetle assemblages to different styles of reforestation on cleared rainforest land. Biodivers Conserv 16:2167–2184

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145

    Article  Google Scholar 

  • Jones ME, Davidson N (2016) Applying an animal-centric approach to improve ecological restoration. Restor Ecol 24:836–842

    Article  Google Scholar 

  • Keeton WS, Kraft CE, Warren DR (2007) Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats. Ecol Appl 17:852–868

    Article  PubMed  Google Scholar 

  • Krombein KV (1967) Trap-nesting wasps and bees: life histories, nests and associates. Smithsonian Press, Washington

    Google Scholar 

  • Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547

    Article  PubMed  Google Scholar 

  • Lasalle J, Gauld ID (1993) Hymenoptera: their diversity, and their impact on the diversity of other organisms, pages 1–26. In: Lasalle J, Gauld ID (eds) Hymenoptera and biodiversity. C.A.B. International, Wallingford

    Google Scholar 

  • Laurance WF, Vasconcelos HL (2009) Consequências ecológicas da fragmentação florestal na Amazônia. Oecologia Brasiliensis 13:434–451

    Article  Google Scholar 

  • Loyola RD, Martins RP (2008) Habitat structure components are effective predictors of trap-nesting Hymenoptera diversity. Basic Appl Ecol 9:735–742

    Article  Google Scholar 

  • Loyola RD, Brito SL, Ferreira RL (2006) Ecosystem disturbances and diversity increase: implications for invertebrate conservation. Biodivers Conserv 15:25–42

    Article  Google Scholar 

  • Macedo JF, Martins RP (1998) Potencial da erva daninha Waltheria americana (Sterculiaceae) no manejo integrado de pragas e polinizadores: visitas de abelhas e vespas. Soc Entomol Bras 27:29–39

    Article  Google Scholar 

  • Martins SV (2001) Recuperação de matas ciliares. Aprenda fácil, Viçosa

    Google Scholar 

  • Martins R, Antonini Y (2016) Can pollination syndromes indicate ecological restoration success in tropical forests? Restor Ecol 24:373–380

    Article  Google Scholar 

  • Melo RR, Zanella FCV (2012) Dinâmica de Fundação de Ninhos por Abelhas e Vespas Solitárias (Hymenoptera, Aculeta) em Área de Caatinga na Estação Ecológica do Seridó. Rev Bras Ciências Agrárias 7:657–662

    Article  Google Scholar 

  • Melo ACG, Miranda DLC, Durigan G (2007) Cobertura de copas como indicador de desenvolvimento estrutural de reflorestamentos de restauração de matas ciliares no Médio Vale do Paranapanema, SP, Brasil. Revista Árvore 31:321–328

    Article  Google Scholar 

  • Michener WK (1997) Quantitatively evaluating restoration “experiments”: research design, statistical analysis, and data management considerations. Restor Ecol 5:324–337

    Article  Google Scholar 

  • Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Moorman CE, Russell KR, Sabin GR, Guynn DC Jr (1999) Snag dynamics and cavity occurrence in the South Carolina Piedmont. For Ecol Manag 118:37–48

    Article  Google Scholar 

  • Morato EF, Campos LAO (2000) Efeitos da fragmentação florestal sobre vespas e abelhas solitárias em uma área da Amazônia Central. Rev Bras de Zool 17:429–444

    Article  Google Scholar 

  • Morato EF, Martins RP (2006) An overview of proximate factors affecting the nesting behavior of solitary wasps and bees (Hymenoptera: Aculeata) in preexisting cavities in Wood. Neotropical Entomol 35:285–298

    Article  Google Scholar 

  • Naiman RJ, Anderson EC (1997) Streams and rivers: their physical and biological variability. In: Schoonmaker PK, Von Hagen B, Wolf EC (eds) The rain forests of home: profile of a North American Bioregion. Island Press, Washington D.C, pp 131–148

    Google Scholar 

  • O’Neill KM (2001) Solitary wasps: behavior and natural history. Cornell University Press, Ithaca

    Google Scholar 

  • Palmer MA, Ambrose RF, Poff NL (1997) Ecological theory and community. Restor Ecol 4:291–300

    Article  Google Scholar 

  • Pascolini-Campbell M, Seager R, Pinson A, Cook BI (2017) Covariability of climate and streamflow in the Upper Rio Grande from interannual to interdecadal timescales. J Hydrol Reg Stud 13:58–71

    Article  Google Scholar 

  • Peipoch M, Brauns M, Hauer FR, Weitere M, Valett HM (2015) Ecological simplification: human influences on riverscape complexity. Bioscience 65:1057–1065

    Article  Google Scholar 

  • Pérez-Maluf R (1993) Biologia de vespas e abelhas solitárias, em ninhos-armadilhas, em Viçosa, MG. Dissertation, Universidade Federal de Viçosa

  • Pik AJ, Dangerfield JM, Bramble RA, Angus C, Nipperess DA (2002) The use of invertebrates to detect small-scale habitat heterogeneity and its application to restoration practices. Environ Monit Assess 75:179–199

    Article  PubMed  Google Scholar 

  • Pinheiro JN, Freitas BM (2010) Efeitos letais dos pesticidas agrícolas sobre polinizadores e perspectivas de manejo para os agroecossistemas brasileiros. Oecologia Australis 14:266–281

    Article  Google Scholar 

  • Pires EP, Pompeu DC, Souza-Silva M (2012) Nesting of solitary wasps and bees (Hymenoptera: Aculeata) in the Biological Reserve Boqueirão, Ingaí, MG. Biosci J 28:302–311

    Google Scholar 

  • R Development Core Team R (2017) A language and environment for statistical computing. Version 3.3.3 [software]. 2017 User’s guide and application published http://www.R-project.org

  • Rader R, Baromeus I, Tylianakis JM, Lalibert E (2014) The winners and losers of land use intensification: pollinator community disassembly is non-random and alters functional diversity. Divers Distrib 20:908–917

    Article  Google Scholar 

  • Rocha-Filho LC, Rabelo LS, Augusto SC, Garófalo CA (2017) Cavity-nesting bees and wasps (Hymenoptera: Aculeata) in a semi-deciduous Atlantic forest fragment immersed in a matrix of agricultural land. J Insect Conserv 21:436–727

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sant’Anna CLB, Ribeiro DB, Garcia LC, Freitas AVL (2014) Fruit-feeding butterfly communities are influenced by restoration age in tropical forests. Restor Ecol 22:480–485

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Strieder MN, Ronchi LH, Stenert C, Schierer RT, Neiss UG (2006) Medidas biológicas e índices de qualidade da água de uma microbacia com poluição urbana e de curtumes no Sul do Brasil. Acta Biológica Leopoldensia 28:17–24

    Google Scholar 

  • Woiski TD (2009) Estrutura da comunidade de vespas e abelhas solitárias em um fragmento urbano de Floresta Ombrofila Mista. Dissertation, Universidade Federal do Paran&#225

  • Woodcock BA, Bullock JM, Mortimer SR, Pywell RF (2012) Limiting factors in the restoration of UK grassland beetle assemblages. Biol Conserv 146:136–143

    Article  Google Scholar 

Download references

Funding

The funding was provided by Fapemig/CEMIG (Grant no. APQ 03055/11).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YA, MCTBM, Data curation: YA, MCTBM, GJA, Formal analysis: YA, GJA, GFM, Funding acquisition:YA, Investigation: YA, MCTBM, GJA, Methodology: YA, MCTBM, GJA, GFM, Project administration: YA, Resources: YA, Supervision: YA, Validation: YA, MCTBM, GJA, GFM, Visualization: YA, MCTBM, GJA, GFM, Writing (original draft preparation): YA, GJA, Writing (review and editing): YA, MCTBM, GJA, GFM.

Corresponding author

Correspondence to Yasmine Antonini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10841_2018_58_MOESM1_ESM.tiff

Supplementary Figure 1 Experimental design in the field. Grey dots represent the plots. Distance among the plots are 100 meter parallel to the line of water and 10 meters perpendicular in areas with 30 m width and 30 m in areas with 100 and 400 m width (TIFF 894 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, G.J., Monteiro, G.F., Messias, M.C.T.B. et al. Restore it, and they will come: trap-nesting bee and wasp communities (Hymenoptera: Aculeata) are recovered by restoration of riparian forests. J Insect Conserv 22, 245–256 (2018). https://doi.org/10.1007/s10841-018-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-018-0058-8

Keywords

Navigation