Skip to main content

Advertisement

Log in

Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, creating trade-offs between pest management and crop pollination. In this three-year study, we examined the effects of pesticides on the abundance and species richness of wild bees within apple orchards of southern Wisconsin. We additionally deployed colonies of Bombus impatiens, a native and common species, in order to relate colony performance to orchard pesticide use. Utilizing grower spray records, we developed “toxicity scores” as a continuous index of pesticide use for each orchard, a measure that incorporated each pesticide’s relative toxicity to bees, its residual activity, and its application rate. While there was no relationship between total wild bee abundance and species richness with toxicity scores, there was a significant, negative effect on sweat bees, Lasioglossum spp. Many of these sweat bees are small-bodied, have short foraging ranges, are social, and have long foraging periods, all traits that could increase bee exposure or sensitivity to orchard pesticides. In addition, sentinel bumble bee colonies at orchards with high toxicity scores produced fewer, and smaller, workers. Bumble bees may also have a greater sensitivity and exposure to orchard pesticides due to their sociality and long foraging periods. Our results demonstrate that certain bee taxa may have a higher exposure or sensitivity to on-farm pesticide applications, and could therefore be vulnerable in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgments

The authors would like to thank Mike Arduser and Jason Gibbs for assistance in identifying bees, Dr. Tom Green for his expertise and helpful comments, The Wisconsin Apple Growers Association, and the United States Department of Agriculture Specialty Crop Block Grant Program for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Mallinger.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallinger, R.E., Werts, P. & Gratton, C. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. J Insect Conserv 19, 999–1010 (2015). https://doi.org/10.1007/s10841-015-9816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9816-z

Keywords

Navigation