Skip to main content

Advertisement

Log in

Distribution of the Eastern knapweed fritillary (Melitaea ornata Christoph, 1893) (Lepidoptera: Nymphalidae): past, present and future

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Climatic change during the Quaternary resulted in periodical range restrictions and expansions in most temperate species. Although some repetitive patterns have been supported, it became obvious that species’ responses might be rather specific and may also depend on habitat preferences of the species in question. Distribution of Melitaea ornata, a little known fritillary species is analysed on different time scales using MaxEnt software. Using the results of genitalia morphometry and the predicted potential refugia during the Last Glacial Maximum (LGM), we reconstructed probable re-colonisation routes. We also predicted changes in the potential area for 2080. The present distribution fits well the known occurrence data except for the Iberian Peninsula and North-Africa where the species is missing. Based on our predictions, temperate areas seem to be less suitable for the species. We proposed two hypotheses to explain this pattern: a less probable recent extinction from Iberia and a more supported historical explanation. Predicted distribution during the LGM mainly fits to widely accepted refugia. Europe was probably re-colonised from two main sources, from the Apennine peninsula and from the Balkans which was probably connected to the Anatolian refugia. Populations of the Levant region and in the Elburs Mts. do not show any significant expansion. Further studies are necessary in the case of the predicted Central Asian refugia. Predictions for 2080 show a northward shift and some extinction events in the Mediterranean region. Core areas are identified which might have a potential for expansion including southern Russia, Hungary and possibly Provence in France. Predicted northward area shifts are only possible if the potential leading edge populations and habitats of the species can be preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13(7):1368–1385

    Article  Google Scholar 

  • Benito Garzón M, Sánchez de Dios R, Sáinz Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30(1):120–134

    Google Scholar 

  • Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of North European trees. J Biogeogr 18(1):103–115

    Article  Google Scholar 

  • Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35(3):464–482

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007a) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Article  Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3(2):279–296

    Article  Google Scholar 

  • Cormont A, Malinowska AH, Kostenko O, Radchuk V, Hemerik L, WallisDeVries MF, Verboom J (2011) Effect of local weather on butterfly flight behaviour, movement, and colonization: significance for dispersal under climate change. Biodivers Conserv 20(3):483–503

    Article  Google Scholar 

  • Dapporto L, Bruschini C (2012) Invading a refugium: post glacial replacement of the ancestral lineage of a Nymphalid butterfly in the West Mediterranean. Org Divers Evol 12(1):39–49

    Google Scholar 

  • Dapporto L, Habel JC, Dennis RLH, Schmitt T (2011a) The biogeography of the western Mediterranean: elucidating contradictory distribution patterns of differentiation in Maniola jurtina (Lepidoptera: Nymphalidae). Biol J Linn Soc 103(3):571–577

    Article  Google Scholar 

  • Dapporto L, Schmitt T, Vila R, Scalercio S, Biermann H, Dinca V, Gayubo SF, Gonzalez JA, Lo Cascio P, Dennis RLH (2011b) Phylogenetic island disequilibrium: evidence for ongoing long-term population dynamics in two Mediterranean butterflies. J Biogeogr 38(5):854–867

    Article  Google Scholar 

  • Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75(1):247–256

    Article  PubMed  Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58

    Article  PubMed  CAS  Google Scholar 

  • de Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Chang 19(2):306–315

    Article  Google Scholar 

  • de Lattin G (1967) Grunddriß der zoogeographie, vol 54, vol 1. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105(18):6668–6672

    Article  PubMed  CAS  Google Scholar 

  • Elith J, Graham A, Dudík M, Ferrier S, Guisan A, Hijmans, Huettmann F, Leathwick, Lehmann A, Li J, Lohmann, Loiselle, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Townsend Peterson A, Phillips, Richardson K, Scachetti-Pereira R, Schapire, Soberón J, Williams S, Wisz, Zimmermann (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Method Ecol Evol 1:330–342

    Google Scholar 

  • Fibiger M (1990) Noctuidae Europaeae: Noctuinae I. Entomological Press, Sorø

    Google Scholar 

  • Fibiger M (1997) Noctuidae Europaeae: Noctuinae III. Noctuidae Europaeae. Entomological Press, Sorø

    Google Scholar 

  • Fløjgaard C, Normand S, Skov F, Svenning J-C (2009) Ice age distributions of European small mammals: insights from species distribution modelling. J Biogeogr 36(6):1152–1163

    Article  Google Scholar 

  • Habel J, Lens L, Rödder D, Schmitt T (2011) From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea. BMC Evol Biol 11(1):215

    Article  PubMed  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142(1):14–32

    Article  Google Scholar 

  • Hesselbarth G, Oorschot HV, Wagener S (1995) Die Tagfalter der Turkei unter Berücksichtigung der angrenzenden Länder: (Lepidoptera Papilionoidea and Hesperioidea) vol 2. Goecke & Evers, Bochold

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58(3):247–276

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68(1–2):87–112

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405(6789):907–913

    Article  PubMed  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25(3):153–160

    Article  PubMed  Google Scholar 

  • Jakšić P (2011) Butterfly species (Lepidoptera: Hesperioidea and Papilionoidea) new to the Serbian fauna. Biol Nyssana 2(1):29–34

    Google Scholar 

  • Korshunov Y, Gorbunov P (1995) Butterflies of the Asian part of Russia. Ural University Press, Yekaterinburg

    Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz, Halle

    Google Scholar 

  • Kuznetsov GV (2010) About finding Melitaea telona Fruhstorfer, 1908 (Lepidoptera: Nymphalidae) in Volgograd region. Caucasian Ent Bull 6(2):193–194

    Google Scholar 

  • Kuznetsov GV (2011) Some data about biology Melitaea telona Fruhstorfer, 1908 and Melitaea robertsi uvarovi Gorbunov, 1995 (Lepidoptera: Nymphalidae) on Volgograd region. Caucasian Ent Bull 7(1):83–84

    Google Scholar 

  • Leneveu J, Chichvarkhin A, Wahlberg N (2009) Varying rates of diversification in the genus Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years. Biol J Linn Soc 97:346–361

    Article  Google Scholar 

  • Leroy SAG, Arpe K (2007) Glacial refugia for summer-green trees in Europe and south-west Asia as proposed by ECHAM3 time-slice atmospheric model simulations. J Biogeogr 34(12):2115–2128

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462(7276):1052–1055

    Article  PubMed  CAS  Google Scholar 

  • Menéndez R, González-Megías A, Collingham Y, Fox R, Roy DB, Ohlemüller R, Thomas CD (2007) Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecol Soc Am 88(3):605–611

    Google Scholar 

  • Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher HM, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith SJ, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C (2011) Postglacial migration supplements climate in determining plant species ranges in Europe. Proc R Soc B Biol 278(1725):3644–3653

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pecsenye K, Bereczki J, Tóth A, Meglécz E, Peregovits L, Juhász E, Varga Z (2007) Connection of the population structure and genetic variability in some protected butterfly species. [A populációstruktúra és a genetikai variabilitás kapcsolata védett nappalilepke-fajainknál.]. In: Forró L (ed) The genesis of the wildlife of the Carpathian basin. The zoological values and faunal genesis. [A Kárpát-medence állatvilágának kialakulása. A Kárpát-medence állattani értékei és faunájának kialakulása.]. Hungarian Natural History Museum [Magyar Természettudományi Múzeum], Budapest, pp 241–260

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23(10):564–571

    Article  PubMed  Google Scholar 

  • Reinig W (1950) Chorologische Voraussetzungen für die Analyse von Formenkreisen. In: Peus F (ed) Syllegomena biologica Festschrift zum 80. Geburtstage von Herrn Pastor Dr. Med. h.c. Otto Kleinschmidt, Lutherstadt Wittenberg, am 13. Dezember 1950. Geest & Portig, Leipzig, p 471

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  PubMed  CAS  Google Scholar 

  • Russell P, Pamperis LN (2011) A reassessment of the presence of Melitaea phoebe ([Denis & Schiffermüller], 1775)(Lepidoptera:Nymphalidae) in the Aegean islands. Ent Gaz 62:139–158

    Google Scholar 

  • Russell P, Pateman J, Gascoigne-Pees M, Tennent WJ (2005) Melitaea emipunia (Verity, 1919) stat. nov: a hitherto unrecognised butterfly species from Europe (Lepidoptera: Nymphalidae). Ent Gaz 56(2):67–70

    Google Scholar 

  • Russell P, Tennent WJ, Pateman J, Varga Z, Benyamini D, Pe’er G, Bálint Z, Gascoigne-Pees M (2007) Further investigations into Melitaea telona Frushstorfer, 1908 (= ogygia Frushstorfer, 1908 = emipunica Verity, 1919) (Lepidoptera: Nymphalidae), with observations on biology and distribution. Ent Gaz 58:137–166

    Google Scholar 

  • Scheldeman X, Zonneveld Mv (2010) Training manual on spatial analysis of plant diversity and distribution. Bioversity International, Rome

    Google Scholar 

  • Schmitt T (2007) Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front Zool 4:11

    Article  PubMed  Google Scholar 

  • Schmitt T, Seitz A (2001) Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. J Biogeogr 28(9):1129–1136

    Article  Google Scholar 

  • Schmitt T, Seitz A (2002) Postglacial distribution area expansion of Polyommatus coridon (Lepidoptera: Lycaenidae) from its Ponto-Mediterranean glacial refugium. Heredity 89(1):20–26

    Article  PubMed  CAS  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, Sway Cv, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, Halder Iv, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk atlas of European butterflies. Pensoft, Moscow

    Google Scholar 

  • Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16(11):608–613

    Article  Google Scholar 

  • Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B Bio 277(1682):661–671

    Article  Google Scholar 

  • Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96(6):1117–1127

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7(4):453–464

    Article  PubMed  CAS  Google Scholar 

  • Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob Change Biol 14(5):951–957

    Article  Google Scholar 

  • Tóth JP, Varga Z (2010) Morphometric study on the genitalia of sibling species Melitaea phoebe and M. telona (Lepidoptera: Nymphalidae). Acta Zool Acad Sci H 56(3):273–282

    Google Scholar 

  • Tóth JP, Varga Z (2011) Inter- and intraspecific variation in the genitalia of the ‘Melitaea phoebe group’ (Lepidoptera, Nymphalidae). Zool Anz 250(3):258–268

    Article  Google Scholar 

  • Tóth JP, Bereczki J, Spring N, Varga Z (2011) Dispersal ability and habitat selection in Melitaea telona kovacsi Varga, 1967 and M. phoebe (Denis & Schiffermüller, 1775) (Nymphalidae) in steppe grassland. Nota Lepidopterol 33(2):199–207

    Google Scholar 

  • van Swaay C, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M, Wiemers M, Wynhoff I (2011) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, William SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220(4):589–594

    Article  Google Scholar 

  • Varga Z (1967) A Melitaea phoebe délkelet-európai populációinak taxonómiai elemzése, két új alfaj leírásával. Acta Biol Debrecina 5:119–137

    Google Scholar 

  • Varga Z (1995) Geographical patterns of biological diversity in the Palaearctic region and the Carpathian Basin. Acta Zool Acad Sci H 41(2):71–92

    Google Scholar 

  • Varga Z (1996) New species and subspecies of Dichagyris, Chersotis and Rhyacia (lepidoptera, noctuidae) from Central Asia. Acta Zool Acad Sci H 42(3):195–230

    Google Scholar 

  • Varga Z (2007) The Kovács’ Fritillary (Melitaea telona kovacsi Varga, 1967) in the Carpathian basin. [A Kovács-tarkalepke (Melitaea telona kovacsi Varga, 1967) a Kárpát-medencében.]. In: László F (ed) The genesis of the wildlife of the Carpathian basin. The zoological values and faunal genesis. [A Kárpát-medence állatvilágának kialakulása. A Kárpát-medence állattani értékei és faunájának kialakulása.]. Hungarian Natural History Museum [Magyar Természettudományi Múzeum], Budapest, pp 143–152

    Google Scholar 

  • Varga Z (2010) Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in eastern central Europe. In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, London

    Google Scholar 

  • Varga Z, Szabó S, Kozma P (2005) Melitaea ogygia kovacsi Varga, 1967 (Lepidoptera, Nymphalidae) in the Pannonian region: taxonomy, bionomy, conservation biology. Studies on the ecology and conservation of butterflies in Europe, vol 2. UFZ Leipzig-Halle

  • Waltari E, Hijmans RJ, Peterson AT, Nyári ÁS, Perkins SL, Guralnick RP (2007) Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2(7):e563

    Article  PubMed  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  PubMed  CAS  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611

    Google Scholar 

  • Willis KJ, van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Q Sci Rev 23(23–24):2369–2387

    Article  Google Scholar 

  • Willis SG, Hill JK, Thomas CD, Roy DB, Fox R, Blakeley DS, Huntley B (2009) Assisted colonization in a changing climate: a test-study using two U.K. butterflies. Conserv Lett 2(1):46–52

    Article  Google Scholar 

  • Wilson RJ, Davies ZG, Thomas CD (2009) Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proc R Soc B 276(1661):1421–1427

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks for Gennadiy V. Kuznetsov for the useful information and the coordinates form the Volgograd region (Russia). We thank to Dr. Axel Hausmann (Zoological State Collection in Munich), Dr. Zsolt Bálint (Hungarian Natural History Museum) for borrowing valuable museum specimens for our studies. Useful suggestions and corrections of Leonardo Dapporto and an anonymous referee are highly appreciated. The survey was supported by the OTKA (K75696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János P. Tóth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, J.P., Varga, K., Végvári, Z. et al. Distribution of the Eastern knapweed fritillary (Melitaea ornata Christoph, 1893) (Lepidoptera: Nymphalidae): past, present and future. J Insect Conserv 17, 245–255 (2013). https://doi.org/10.1007/s10841-012-9503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-012-9503-2

Keywords

Navigation