Skip to main content

Advertisement

Log in

Management of atrial fibrillation: two decades of progress — a scientific statement from the European Cardiac Arrhythmia Society

  • Reviews
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical practice. The aim of this review was to evaluate the progress made in the management of AF over the two last decades.

Results

Clinical classification of AF is usually based on the presence of symptoms, the duration of AF episodes and their possible recurrence over time, although incidental diagnosis is not uncommon. The majority of patients with AF have associated cardiovascular diseases and more recently the recognition of modifiable risk factors both cardiovascular and non-cardiovascular which should be considered in its management. Among AF-related complications, stroke and transient ischaemic accidents (TIAs) carry considerable morbidity and mortality risk. The use of implantable devices such as pacemakers and defibrillators, wearable garments and subcutaneous cardiac monitors with recording capabilities has enabled to access the burden of “subclinical AF”. The recent introduction of non-vitamin K antagonists has led to improve the prevention of stroke and peripheral embolism. Agents capable of reversing non-vitamin K antagonists have also become available in case of clinically relevant major bleeding. Transcatheter closure of left atrial appendage represents an option for patients unable to take oral anticoagulation. When treating patients with AF, clinicians need to select the most suitable strategy, i.e. control of heart rate and/or restoration and maintenance of sinus rhythm. The studies comparing these two strategies have not shown differences in terms of mortality. If an AF episode is poorly tolerated from a haemodynamic standpoint, electrical cardioversion is indicated. Otherwise, restoration of sinus rhythm can be obtained using intravenous pharmacological cardioversion and oral class I or class III antiarrhythmic is used to prevent recurrences. During the last two decades after its introduction in daily practice, catheter ablation has gained considerable escalation in popularity. Progress has also been made in AF associated with heart failure with reduced or preserved ejection fraction.

Conclusions

Significant progress has been made within the past 2 decades both in the pharmacological and non-pharmacological managements of this cardiac arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 Study. Circulation. 2014;129(8):837–47. https://doi.org/10.1161/circulationaha.113.005119.

    Article  PubMed  Google Scholar 

  2. Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology. 1978;28(10):973–7. https://doi.org/10.1212/wnl.28.10.973.

    Article  CAS  PubMed  Google Scholar 

  3. Bunch TJ. Atrial fibrillation and dementia. Circulation. 2020;142(7):618–20. https://doi.org/10.1161/circulationaha.120.045866.

    Article  PubMed  Google Scholar 

  4. Slee A, Saksena S. Impact of initial heart failure emergence on clinical outcomes of atrial fibrillation patients in the AFFIRM trial. Amer Heart J. 2020;220:1–11. https://doi.org/10.1016/j.ahj.2019.10.005.

    Article  PubMed  Google Scholar 

  5. Lévy S, Breithardt G, Campbell RW, et al. Atrial fibrillation: current knowledge and recommendations for management Working Group on Arrhythmias of the European Society of Cardiology. Europ Heart J. 1998;19(9):1294–320.

    Article  Google Scholar 

  6. Strickberger SA, Ip J, Saksena S, Curry K, Bahnson TD, Ziegler PD. Relationship between atrial tachyarrhythmias and symptoms. Heart Rhythm. 2005;2(2):125–31. https://doi.org/10.1016/j.hrthm.2004.10.042.

    Article  PubMed  Google Scholar 

  7. Lévy S, Santini L, Cappato R, Steinbeck G, Capucci A, Saksena S. Clinical classification and the subclinical atrial fibrillation challenge: a position paper of the European Cardiac Arrhythmia Society. J Interv Cardiac Electrophysiol. 2020;59(3):495–507. https://doi.org/10.1007/s10840-020-00859-y.

    Article  Google Scholar 

  8. Hohnloser SH, Kuck KH, Lilienthal J. Rhythm or rate control in atrial fibrillation–Pharmacological Intervention in Atrial Fibrillation (PIAF): a randomised trial. Lancet. 2000;356(9244):1789–94. https://doi.org/10.1016/s0140-6736(00)03230-x.

    Article  CAS  PubMed  Google Scholar 

  9. Carlsson J, Miketic S, Windeler J, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J Amer Coll Cardiol. 2003;41(10):1690–6. https://doi.org/10.1016/s0735-1097(03)00332-2.

    Article  Google Scholar 

  10. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. New Engl J Med. 2002;347(23):1825–33. https://doi.org/10.1056/NEJMoa021328.

    Article  CAS  PubMed  Google Scholar 

  11. Olshansky B, Rosenfeld LE, Warner AL, et al. The atrial fibrillation follow-up investigation of rhythm management (AFFIRM) study: approaches to control rate in atrial fibrillation. J Amer Coll Cardiol. 2004;43(7):1201–8. https://doi.org/10.1016/j.jacc.2003.11.032.

    Article  Google Scholar 

  12. Corley SD, Epstein AE, DiMarco JP, et al. Relationship between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation. 2004;109(12):1509–13. https://doi.org/10.1161/01.cir.0000121736.16643.11.

    Article  PubMed  Google Scholar 

  13. Andrade JG, Roy D, Wyse DG, et al. Heart rate and adverse outcomes in patients with atrial fibrillation: a combined AFFIRM and AF-CHF substudy. Heart Rhythm. 2016;13(1):54–61. https://doi.org/10.1016/j.hrthm.2015.08.028.

    Article  PubMed  Google Scholar 

  14. The AFFIRM First Antiarrhythmic Drug Substudy Investigators. Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug. J Amer Coll Cardiol. 2003;42(1):20–9. https://doi.org/10.1016/s0735-1097(03)00559-x.

    Article  Google Scholar 

  15. van Gelder IC, Hagens VE, Kingma JH, et al. Rate control versus electrical cardioversion for atrial fibrillation: a randomised comparison of two treatment strategies concerning morbidity, mortality, quality of life and cost-benefit - the RACE study design. Neth Heart J. 2002;10(3):118–24.

    PubMed  PubMed Central  Google Scholar 

  16. Crijns HJ. Rate versus rhythm control in patients with atrial fibrillation: what the trials really say. Drugs. 2005;65(12):1651–67. https://doi.org/10.2165/00003495-200565120-00004.

    Article  CAS  PubMed  Google Scholar 

  17. Van Gelder IC, Groenveld HF, Crijns HJ, et al. Lenient versus strict rate control in patients with atrial fibrillation. New Engl J Med. 2010;362(15):1363–73. https://doi.org/10.1056/NEJMoa1001337.

    Article  PubMed  Google Scholar 

  18. Opolski G, Torbicki A, Kosior DA, et al. Rate control vs rhythm control in patients with nonvalvular persistent atrial fibrillation: the results of the Polish How to Treat Chronic Atrial Fibrillation (HOT CAFE) Study. Chest. 2004;126(2):476–86. https://doi.org/10.1378/chest.126.2.476.

    Article  PubMed  Google Scholar 

  19. Lévy S, Maarek M, Coumel P, et al. Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study. Coll Fr Cardiologists Circ. 1999;99(23):3028–35. https://doi.org/10.1161/01.cir.99.23.3028.

    Article  Google Scholar 

  20. Ferreira C, Providência R, Ferreira MJ, Gonçalves LM. Atrial fibrillation and non-cardiovascular diseases: a systematic review. Arqu Bras Card. 2015;105(5):519–26. https://doi.org/10.5935/abc.20150142.

    Article  CAS  Google Scholar 

  21. Kirchhof P, Lip GY, Van Gelder IC, et al. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options–a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference. Europace. 2012;14(1):8–27. https://doi.org/10.1093/europace/eur241.

    Article  PubMed  Google Scholar 

  22. Marijon E, Le Heuzey JY, Connolly S, et al. Causes of death and influencing factors in patients with atrial fibrillation: a competing-risk analysis from the randomized evaluation of long-term anticoagulant therapy study. Circulation. 2013;128(20):2192–201. https://doi.org/10.1161/circulationaha.112.000491.

    Article  CAS  PubMed  Google Scholar 

  23. Chung MK, Eckhardt LL, Chen LY, et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation. 2020;141(16):e750–72. https://doi.org/10.1161/cir.0000000000000748.

    Article  PubMed  Google Scholar 

  24. Diamond JA, Phillips RA. Hypertensive heart disease. Hypertens Res. 2005;28(3):191–202. https://doi.org/10.1291/hypres.28.191.

    Article  CAS  PubMed  Google Scholar 

  25. González-Pacheco H, Márquez MF, Arias-Mendoza A, et al. Clinical features and in-hospital mortality associated with different types of atrial fibrillation in patients with acute coronary syndrome with and without ST elevation. J Cardiol. 2015;66(2):148–54. https://doi.org/10.1016/j.jjcc.2014.11.001.

    Article  PubMed  Google Scholar 

  26. Krijthe BP, Leening MJ, Heeringa J, et al. Unrecognized myocardial infarction and risk of atrial fibrillation: the Rotterdam Study. Intern J Cardiol. 2013;168(2):1453–7. https://doi.org/10.1016/j.ijcard.2012.12.057.

    Article  Google Scholar 

  27. Guimarães PO, Zakroysky P, Goyal A, Lopes RD, Kaltenbach LA, Wang TY. Usefulness of antithrombotic therapy in patients with atrial fibrillation and acute myocardial infarction. Am J Cardiol. 2019;123(1):12–8. https://doi.org/10.1016/j.amjcard.2018.09.031.

    Article  PubMed  Google Scholar 

  28. Erez A, Goldenberg I, Sabbag A, et al. Temporal trends and outcomes associated with atrial fibrillation observed during acute coronary syndrome: real-world data from the Acute Coronary Syndrome Israeli Survey (ACSIS), 2000–2013. Clin Cardiol. 2017;40(5):275–80. https://doi.org/10.1002/clc.22654.

    Article  PubMed  Google Scholar 

  29. Cameron A, Schwartz MJ, Kronmal RA, Kosinski AS. Prevalence and significance of atrial fibrillation in coronary artery disease (CASS Registry). Amer J Cardiol. 1988;61(10):714–7. https://doi.org/10.1016/0002-9149(88)91053-3.

    Article  CAS  PubMed  Google Scholar 

  30. Grigioni F, Avierinos JF, Ling LH, et al. Atrial fibrillation complicating the course of degenerative mitral regurgitation: determinants and long-term outcome. J Amer Coll Cardiol. 2002;40(1):84–92. https://doi.org/10.1016/s0735-1097(02)01922-8.

    Article  Google Scholar 

  31. Diker E, Aydogdu S, Ozdemir M, et al. Prevalence and predictors of atrial fibrillation in rheumatic valvular heart disease. Amer J Cardiol. 1996;77(1):96–8. https://doi.org/10.1016/s0002-9149(97)89145-x.

    Article  CAS  PubMed  Google Scholar 

  32. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11. https://doi.org/10.1016/s0140-6736(06)69208-8.

    Article  PubMed  Google Scholar 

  33. Philippart R, Brunet-Bernard A, Clementy N, et al. Prognostic value of CHA2DS2-VASc score in patients with ‘non-valvular atrial fibrillation’ and valvular heart disease: the Loire Valley Atrial Fibrillation Project. Eur Heart J. 2015;36(28):1822–30. https://doi.org/10.1093/eurheartj/ehv163.

    Article  PubMed  Google Scholar 

  34. Lip GYH, Jensen M, Melgaard L, Skjøth F, Nielsen PB, Larsen TB. Stroke and bleeding risk scores in patients with atrial fibrillation and valvular heart disease: evaluating ‘valvular heart disease’ in a nationwide cohort study. Europace. 2019;21(1):33–40. https://doi.org/10.1093/europace/euy151.

    Article  PubMed  Google Scholar 

  35. Watanabe T, Kawasaki M, Tanaka R, et al. Association among blood pressure control in elderly patients with hypertension, left atrial structure and function and new-onset atrial fibrillation: a prospective 2-year study in 234 patients. Hypertens Res. 2013;36(9):799–806. https://doi.org/10.1038/hr.2013.25.

    Article  PubMed  Google Scholar 

  36. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612.

    Article  PubMed  Google Scholar 

  37. Falasconi G, Pannone L, Slavich M, Margonato A, Fragasso G, Spoladore R. Atrial fibrillation in hypertrophic cardiomyopathy: pathophysiology, diagnosis and management. Am J Cardiovasc Dis. 2020;10(4):409–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Patten M, Pecha S, Aydin A. Atrial fibrillation in hypertrophic cardiomyopathy: diagnosis and considerations for management. J Atrial Fibrillation. 2018;10(5):1556. https://doi.org/10.4022/jafib.1556.

    Article  Google Scholar 

  39. Dinshaw L, Münkler P, Schäffer B, et al. Ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: treatment strategy, characteristics of consecutive atrial tachycardia and long-term outcome. J Am Heart Assoc. 2021;10(3): e017451. https://doi.org/10.1161/jaha.120.017451.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jensen AS, Idorn L, Nørager B, Vejlstrup N, Sondergaard L. Anticoagulation in adults with congenital heart disease: the who, the when and the how? Heart. 2015;101(6):424–9. https://doi.org/10.1136/heartjnl-2014-305576.

    Article  CAS  PubMed  Google Scholar 

  41. Moe TG, Abrich VA, Rhee EK. Atrial fibrillation in patients with congenital heart disease. J Atrial Fibrillation. 2017;10(1):1612. https://doi.org/10.4022/jafib.1612.

    Article  Google Scholar 

  42. Mehra R, Benjamin EJ, Shahar E, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir. 2006;173(8):910–6. https://doi.org/10.1164/rccm.200509-1442OC.

    Article  Google Scholar 

  43. Gami AS, Pressman G, Caples SM, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004;110(4):364–7. https://doi.org/10.1161/01.cir.0000136587.68725.8e.

    Article  PubMed  Google Scholar 

  44. Anter E Di Biase L Contreras-Valdes FM et al. Atrial substrate and triggers of paroxysmal atrial fibrillation in patients with obstructive sleep apnea. Circ Arrhyth Electrophysiol 2017; 10(11). https://doi.org/10.1161/circep.117.005407

  45. Arzt M, Young T, Finn L, Skatrud JB, Bradley TD. Association of sleep-disordered breathing and the occurrence of stroke. Amer J Resp. 2005;172(11):1447–51. https://doi.org/10.1164/rccm.200505-702OC.

    Article  Google Scholar 

  46. Yaranov DM, Smyrlis A, Usatii N, et al. Effect of obstructive sleep apnea on frequency of stroke in patients with atrial fibrillation. Amer J Cardiol. 2015;115(4):461–5. https://doi.org/10.1016/j.amjcard.2014.11.027.

    Article  PubMed  Google Scholar 

  47. Huang B, Yang Y, Zhu J, et al. Clinical characteristics and prognostic significance of chronic obstructive pulmonary disease in patients with atrial fibrillation: results from a multicenter atrial fibrillation registry study. JAMDA. 2014;15(8):576–81. https://doi.org/10.1016/j.jamda.2014.04.009.

    Article  PubMed  Google Scholar 

  48. de Vos CB, Pisters R, Nieuwlaat R, et al. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J Amer Coll Cardiol. 2010;55(8):725–31. https://doi.org/10.1016/j.jacc.2009.11.040.

    Article  Google Scholar 

  49. Onishi K. Total management of chronic obstructive pulmonary disease (COPD) as an independent risk factor for cardiovascular disease. J Cardiol. 2017;70(2):128–34. https://doi.org/10.1016/j.jjcc.2017.03.001.

    Article  PubMed  Google Scholar 

  50. Gu J, Liu X, Tan H, et al. Impact of chronic obstructive pulmonary disease on procedural outcomes and quality of life in patients with atrial fibrillation undergoing catheter ablation. J Cardiovasc Electrophysiol. 2013;24(2):148–54. https://doi.org/10.1111/j.1540-8167.2012.02448.x.

    Article  PubMed  Google Scholar 

  51. Alonso A, Lopez FL, Matsushita K, et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2011;123(25):2946–53. https://doi.org/10.1161/circulationaha.111.020982.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu D, Murakoshi N, Sairenchi T, et al. Anemia and reduced kidney function as risk factors for new onset of atrial fibrillation (from the Ibaraki prefectural health study). Amer J Cardiol. 2015;115(3):328–33. https://doi.org/10.1016/j.amjcard.2014.10.041.

    Article  PubMed  Google Scholar 

  53. Watanabe H, Watanabe T, Sasaki S, Nagai K, Roden DM, Aizawa Y. Close bidirectional relationship between chronic kidney disease and atrial fibrillation: the Niigata preventive medicine study. Amer Heart J. 2009;158(4):629–36. https://doi.org/10.1016/j.ahj.2009.06.031.

    Article  PubMed  Google Scholar 

  54. Providência R, Marijon E, Boveda S, et al. Meta-analysis of the influence of chronic kidney disease on the risk of thromboembolism among patients with nonvalvular atrial fibrillation. Am J Cardiol. 2014;114(4):646–53. https://doi.org/10.1016/j.amjcard.2014.05.048.

    Article  PubMed  Google Scholar 

  55. Roy-Chaudhury P, Tumlin JA, Koplan BA, Costea AI, Kher V, Williamson D, et al. Primary outcomes of the monitoring in dialysis study indicate that clinically significant arrhythmias are common in hemodialysis patients and related to dialytic cycle. Kidney Int. 2018;93:941–51.

    Article  Google Scholar 

  56. Zimmerman D, Sood MM, Rigatto C, Holden RM, Hiremath S, Clase CM. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol Dial Transplant. 2012;27:3816–22.

    Article  CAS  Google Scholar 

  57. Coleman CI, Kreutz R, Sood NA, Bunz TJ, Eriksson D, Meinecke AK, Baker WL. Rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and severe kidney disease or undergoing hemodialysis. Am J Med. 2019;132:1078–83.

    Article  CAS  Google Scholar 

  58. Siontis KC, Zhang X, Eckard A, Bhave N, Schaubel DE, He K, Tilea A, Stack AG, Balkrishnan R, Yao X, Noseworthy PA, Shah ND, Saran R, Nallamothu BK. Outcomes associated with apixaban use in patients with end-stage kidney disease and atrial fibrillation in the United States. Circulation. 2018;138:1519–29.

    Article  CAS  Google Scholar 

  59. Ha JT, Neuen BL, Cheng LP, Jun M, Toyama T, Gallagher MP, Jardine MJ, Sood MM, Garg AX, Palmer SC, Mark PB, Wheeler DC, Jha V, Freedman B, Johnson DW, Perkovic V, Badve SV. Benefits and harms of oral anticoagulant therapy in chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2019;171:181–9. https://doi.org/10.7326/M19-0087 (Epub 2019 Jul 16).

    Article  PubMed  Google Scholar 

  60. Pokorney SD. RENal hemodialysis patients ALlocated apixaban versus warfarin in atrial fibrillation (RENAL-AF). Presentation at the American Heart Association Annual Scientific Sessions (AHA 2019), Philadelphia, PA, 16 November 2019.

  61. Reddy VY, Doshi SK, Kar S, et al. 5-year outcomes after left atrial appendage closure: from the PREVAIL and PROTECT AF trials. J Am Coll Cardiol. 2017;70(24):2964–75.

    Article  Google Scholar 

  62. Makrygiannis SS, Margariti A, Rizikou D, et al. Incidence and predictors of new-onset atrial fibrillation in noncardiac intensive care unit patients. J Crit Care Med. 2014;29(4):697.e1-5. https://doi.org/10.1016/j.jcrc.2014.03.029.

    Article  Google Scholar 

  63. Salman S, Bajwa A, Gajic O, Afessa B. Paroxysmal atrial fibrillation in critically ill patients with sepsis. J Intensive Care Med. 2008;23(3):178–83. https://doi.org/10.1177/0885066608315838.

    Article  PubMed  Google Scholar 

  64. Meierhenrich R, Steinhilber E, Eggermann C, et al. Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: a prospective observational study. Crit care. 2010;14(3):R108. https://doi.org/10.1186/cc9057.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cooper DS. Hyperthyroidism. Lancet. 2003;362(9382):459–68. https://doi.org/10.1016/s0140-6736(03)14073-1.

    Article  CAS  PubMed  Google Scholar 

  66. Philip I, Berroëta C, Leblanc I. Perioperative challenges of atrial fibrillation. Curr Opin Anaesthesiol. 2014;27(3):344–52. https://doi.org/10.1097/aco.0000000000000070.

    Article  PubMed  Google Scholar 

  67. Lee SH, Kang DR, Uhm JS, et al. New-onset atrial fibrillation predicts long-term newly developed atrial fibrillation after coronary artery bypass graft. Amer Heart J. 2014;167(4):593-600.e1. https://doi.org/10.1016/j.ahj.2013.12.010.

    Article  PubMed  Google Scholar 

  68. Alturki A, Marafi M, Proietti R, et al. Major adverse cardiovascular events associated with postoperative atrial fibrillation after noncardiac surgery: a systematic review and meta-analysis. Circ Arrhyth Electrophysiol. 2020;13(1):e007437. https://doi.org/10.1161/circep.119.007437.

    Article  Google Scholar 

  69. Villareal RP, Hariharan R, Liu BC, et al. Postoperative atrial fibrillation and mortality after coronary artery bypass surgery. J Amer Coll Cardiol. 2004;43(5):742–8. https://doi.org/10.1016/j.jacc.2003.11.023.

    Article  Google Scholar 

  70. Crystal E, Connolly SJ, Sleik K, Ginger TJ, Yusuf S. Interventions on prevention of postoperative atrial fibrillation in patients undergoing heart surgery: a meta-analysis. Circulation. 2002;106(1):75–80. https://doi.org/10.1161/01.cir.0000021113.44111.3e.

    Article  PubMed  Google Scholar 

  71. Lee JZ, Singh N, Howe CL, et al. Colchicine for prevention of post-operative atrial fibrillation: a meta-analysis. JACC Clin Electrophysiol. 2016;2(1):78–85. https://doi.org/10.1016/j.jacep.2015.09.016.

    Article  PubMed  Google Scholar 

  72. Feyz L, Theuns DA, Bhagwandien R, et al. Atrial fibrillation reduction by renal sympathetic denervation: 12 months’ results of the AFFORD study. Clin Res Cardiol. 2019;108(6):634–42. https://doi.org/10.1007/s00392-018-1391-3.

    Article  CAS  PubMed  Google Scholar 

  73. Wang TJ, Parise H, Levy D, et al. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292(20):2471–7. https://doi.org/10.1001/jama.292.20.2471.

    Article  CAS  PubMed  Google Scholar 

  74. Nalliah CJ, Sanders P, Kottkamp H, Kalman JM. The role of obesity in atrial fibrillation. Eur Heart J. 2016;37(20):1565–72. https://doi.org/10.1093/eurheartj/ehv486.

    Article  PubMed  Google Scholar 

  75. Tsang TS, Barnes ME, Miyasaka Y, et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur Heart J. 2008;29(18):2227–33. https://doi.org/10.1093/eurheartj/ehn324.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Feng T, Vegard M, Strand LB, et al. Weight and weight change and risk of atrial fibrillation: the HUNT study. Eur Heart J. 2019;40(34):2859–66. https://doi.org/10.1093/eurheartj/ehz390.

    Article  CAS  PubMed  Google Scholar 

  77. Batal O, Schoenhagen P, Shao M, et al. Left atrial epicardial adiposity and atrial fibrillation. Circ Arrhyth Electrophysiol. 2010;3(3):230–6. https://doi.org/10.1161/circep.110.957241.

    Article  Google Scholar 

  78. Middeldorp ME, Pathak RK, Lau DH, Sanders P. PREVEntion and regReSsive Effect of weight-loss and risk factor modification on Atrial Fibrillation: the REVERSE-AF study-authors’ reply. Europace. 2019;21(6):990–1. https://doi.org/10.1093/europace/euz050.

    Article  PubMed  Google Scholar 

  79. Pathak RK, Middeldorp ME, Meredith M, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort a long-term follow-up study (LEGACY). J Amer Coll Cardiol. 2015;65(20):2159–69.

    Article  Google Scholar 

  80. Rienstra M, Hobbelt AH, Alings M, et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: results of the RACE 3 trial. Eur Heart J. 2018;39(32):2987–96. https://doi.org/10.1093/eurheartj/ehx739.

    Article  CAS  PubMed  Google Scholar 

  81. Lynch KT, Mehaffey JH, Hawkins RB, Hassinger TE, Hallowell PT, Kirby JL. Bariatric surgery reduces incidence of atrial fibrillation: a propensity score-matched analysis. SOARD. 2019;15(2):279–85. https://doi.org/10.1016/j.soard.2018.11.021.

    Article  Google Scholar 

  82. Staerk L, Sherer JA, Ko D, Benjamin EJ, Helm RH. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ Res. 2017;120(9):1501–17. https://doi.org/10.1161/circresaha.117.309732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dublin S, Glazer NL, Smith NL, et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J Gen Intern M. 2010;25(8):853–8. https://doi.org/10.1007/s11606-010-1340-y.

    Article  Google Scholar 

  84. Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13:123. https://doi.org/10.1186/s12933-014-0123-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fatemi O, Yuriditsky E, Tsioufis C, et al. Impact of intensive glycemic control on the incidence of atrial fibrillation and associated cardiovascular outcomes in patients with type 2 diabetes mellitus (from the Action to Control Cardiovascular Risk in Diabetes Study). Amer J Cardiol. 2014;114(8):1217–22. https://doi.org/10.1016/j.amjcard.2014.07.045.

    Article  PubMed  Google Scholar 

  86. Rizzo MR, Sasso FC, Marfella R, et al. Autonomic dysfunction is associated with brief episodes of atrial fibrillation in type 2 diabetes. J Diabetes Complic. 2015;29(1):88–92. https://doi.org/10.1016/j.jdiacomp.2014.09.002.

    Article  Google Scholar 

  87. Donnellan E, Aagaard P, Kanj M, et al. Association between pre-ablation glycemic control and outcomes among patients with diabetes undergoing atrial fibrillation ablation. JACC Clin Electrophysiol. 2019;5(8):897–903. https://doi.org/10.1016/j.jacep.2019.05.018.

    Article  PubMed  Google Scholar 

  88. Ettinger PO, Wu CF, De La Cruz C, Weisse AB Jr, Ahmed SS, Regan TJ. Arrhythmias and the “Holiday Heart”: alcohol-associated cardiac rhythm disorders. Amer Heart J. 1978;95(5):555–62. https://doi.org/10.1016/0002-8703(78)90296-x.

    Article  CAS  PubMed  Google Scholar 

  89. Kodama S, Saito K, Tanaka S, et al. Alcohol consumption and risk of atrial fibrillation: a meta-analysis. J Americ Coll Cardiol. 2011;57(4):427–36. https://doi.org/10.1016/j.jacc.2010.08.641.

    Article  CAS  Google Scholar 

  90. Conen D, Tedrow UB, Cook NR, Moorthy MV, Buring JE, Albert CM. Alcohol consumption and risk of incident atrial fibrillation in women. JAMA. 2008;300(21):2489–96. https://doi.org/10.1001/jama.2008.755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mandyam MC, Vedantham V, Scheinman MM, et al. Alcohol and vagal tone as triggers for paroxysmal atrial fibrillation. Amer J Cardiol. 2012;110(3):364–8. https://doi.org/10.1016/j.amjcard.2012.03.033.

    Article  CAS  PubMed  Google Scholar 

  92. Voskoboinik A, Kalman JM, De Silva A, et al. Alcohol abstinence in drinkers with atrial fibrillation. N Engl J Med. 2020;382(1):20–8. https://doi.org/10.1056/NEJMoa1817591.

    Article  PubMed  Google Scholar 

  93. Drca N, Wolk A, Jensen-Urstad M, Larsson SC. Physical activity is associated with a reduced risk of atrial fibrillation in middle-aged and elderly women. Heart. 2015;101(20):1627–30. https://doi.org/10.1136/heartjnl-2014-307145.

    Article  CAS  PubMed  Google Scholar 

  94. Mont L, Sambola A, Brugada J, et al. Long-lasting sport practice and lone atrial fibrillation. Eur Heart J. 2002;23(6):477–82. https://doi.org/10.1053/euhj.2001.2802.

    Article  CAS  PubMed  Google Scholar 

  95. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A syst rev meta-anal Europace. 2009;11(9):1156–9. https://doi.org/10.1093/europace/eup197.

    Article  Google Scholar 

  96. Molina L, Mont L, Marrugat J, et al. Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace. 2008;10(5):618–23. https://doi.org/10.1093/europace/eun071.

    Article  PubMed  Google Scholar 

  97. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. Circulation. 2008;118(8):800–7. https://doi.org/10.1161/circulationaha.108.785626.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Pathak RK, Elliott A, Middeldorp ME, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT Study. J Amer Coll Cardiol. 2015;66(9):985–96. https://doi.org/10.1016/j.jacc.2015.06.488.

    Article  Google Scholar 

  99. Aizer A, Gaziano JM, Cook NR, Manson JE, Buring JE, Albert CM. Relation of vigorous exercise to risk of atrial fibrillation. Amer J Cardiol. 2009;103(11):1572–7. https://doi.org/10.1016/j.amjcard.2009.01.374.

    Article  PubMed  Google Scholar 

  100. Lakkireddy D, Atkins D, Pillarisetti J, et al. Effect of yoga on arrhythmia burden, anxiety, depression, and quality of life in paroxysmal atrial fibrillation: the YOGA My Heart Study. J Amer Coll Cardiol. 2013;61(11):1177–82. https://doi.org/10.1016/j.jacc.2012.11.060.

    Article  Google Scholar 

  101. Aune D, Schlesinger S, Norat T, Riboli E. Tobacco smoking and the risk of atrial fibrillation: a systematic review and meta-analysis of prospective studies. Eur J Prev Cardiol. 2018;25(13):1437–51. https://doi.org/10.1177/2047487318780435.

    Article  PubMed  Google Scholar 

  102. Chamberlain AM, Agarwal SK, Folsom AR, et al. Smoking and incidence of atrial fibrillation: results from the Atherosclerosis Risk in Communities (ARIC) study. Heart Rhythm. 2011;8(8):1160–6. https://doi.org/10.1016/j.hrthm.2011.03.038.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cheng WH, Lo LW, Lin YJ, et al. Cigarette smoking causes a worse long-term outcome in persistent atrial fibrillation following catheter ablation. J Cardiovasc Electrophysiol. 2018;29(5):699–706. https://doi.org/10.1111/jce.13451.

    Article  PubMed  Google Scholar 

  104. Wyse DG Van Gelder IC Ellinor PT Go AS Kalman JM Narayan SM Nattel S Schotten U Rienstra M. Lone atrial fibrillation: does it exist? J Am Coll Cardiol. 2014 May 6;63(17):1715–23. https://doi.org/10.1016/j.jacc.2014.01.023. Epub 2014 Feb 12. PMID: 24530673; PMCID: PMC4008692.

  105. Oyen N, Ranthe MF, Carstensen L, et al. Familial aggregation of lone atrial fibrillation in young persons. J Amer Coll Cardiol. 2012;60(10):917–21. https://doi.org/10.1016/j.jacc.2012.03.046.

    Article  Google Scholar 

  106. Fatkin D, Santiago CF, Huttner IG, Lubitz SA, Ellinor PT. Genetics of atrial fibrillation: state of the art in 2017. Heart Lung Circ. 2017;26(9):894–901. https://doi.org/10.1016/j.hlc.2017.04.008.

    Article  PubMed  Google Scholar 

  107. Maixent JM, Paganelli F, Scaglione J, Lévy S. Antibodies against myosin in sera of patients with idiopathic paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 1998;9(6):612–7. https://doi.org/10.1111/j.1540-8167.1998.tb00942.x.

    Article  CAS  PubMed  Google Scholar 

  108. Potpara TS, Stankovic GR, Beleslin BD, et al. A 12-year follow-up study of patients with newly diagnosed lone atrial fibrillation: implications of arrhythmia progression on prognosis: the Belgrade Atrial Fibrillation study. Chest. 2012;141(2):339–47. https://doi.org/10.1378/chest.11-0340.

    Article  PubMed  Google Scholar 

  109. Jahangir A, Lee V, Friedman PA, et al. Long-term progression and outcomes with aging in patients with lone atrial fibrillation: a 30-year follow-up study. Circulation. 2007;115(24):3050–6. https://doi.org/10.1161/circulationaha.106.644484.

    Article  PubMed  Google Scholar 

  110. McGrath ER, Kapral MK, Fang J, et al. Association of atrial fibrillation with mortality and disability after ischemic stroke. Neurology. 2013;81(9):825–32. https://doi.org/10.1212/WNL.0b013e3182a2cc15.

    Article  PubMed  Google Scholar 

  111. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864–70. https://doi.org/10.1001/jama.285.22.2864.

    Article  CAS  PubMed  Google Scholar 

  112. Comparison of 12 risk stratification schemes to predict stroke in patients with nonvalvular atrial fibrillation. Stroke 2008; 39(6): 1901–10. https://doi.org/10.1161/strokeaha.107.501825

  113. Olesen JB, Torp-Pedersen C, Hansen ML, Lip GY. The value of the CHA2DS2-VASc score for refining stroke risk stratification in patients with atrial fibrillation with a CHADS2 score 0–1: a nationwide cohort study. Thromb Haemost. 2012;107(6):1172–9. https://doi.org/10.1160/th12-03-0175.

    Article  CAS  PubMed  Google Scholar 

  114. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest. 2010;137(2):263–72. https://doi.org/10.1378/chest.09-1584.

    Article  PubMed  Google Scholar 

  115. Jame S, Barnes G. Stroke and thromboembolism prevention in atrial fibrillation. Heart. 2020;106(1):10–7. https://doi.org/10.1136/heartjnl-2019-314898.

    Article  CAS  PubMed  Google Scholar 

  116. Wu VC, Wu M, Aboyans V, et al. Female sex as a risk factor for ischaemic stroke varies with age in patients with atrial fibrillation. Heart. 2020;106(7):534–40. https://doi.org/10.1136/heartjnl-2019-315065.

    Article  PubMed  Google Scholar 

  117. Tomasdottir M, Friberg L, Hijazi Z, Lindbäck J, Oldgren J. Risk of ischemic stroke and utility of CHA(2) DS(2) -VASc score in women and men with atrial fibrillation. Clin Cardiol. 2019;42(10):1003–9. https://doi.org/10.1002/clc.23257.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Friberg L, Benson L, Rosenqvist M, Lip GY. Assessment of female sex as a risk factor in atrial fibrillation in Sweden: nationwide retrospective cohort study. BMJ (Clinical research ed). 2012;344:e3522. https://doi.org/10.1136/bmj.e3522.

    Article  Google Scholar 

  119. Marzona I, Proietti M, Farcomeni A, et al. Sex differences in stroke and major adverse clinical events in patients with atrial fibrillation: a systematic review and meta-analysis of 993,600 patients. Int J Cardiol. 2018;269:182–91. https://doi.org/10.1016/j.ijcard.2018.07.044.

    Article  PubMed  Google Scholar 

  120. Nielsen PB, Overvad TF. Female sex as a risk modifier for stroke risk in atrial fibrillation: using CHA2DS2-VASc versus CHA2DS2-VA for stroke risk stratification in atrial fibrillation: a note of caution. Thromb Haemost. 2020;120(6):894–8. https://doi.org/10.1055/s-0040-1710014.

    Article  PubMed  Google Scholar 

  121. Olesen JB, Lip GY, Hansen ML, et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: nationwide cohort study. BMJ Clin res ed. 2011;342:d124. https://doi.org/10.1136/bmj.d124.

    Article  Google Scholar 

  122. Friberg L, Skeppholm M, Terént A. Benefit of anticoagulation unlikely in patients with atrial fibrillation and a CHA2DS2-VASc score of 1. J Amer Coll Cardiol. 2015;65(3):225–32. https://doi.org/10.1016/j.jacc.2014.10.052.

    Article  Google Scholar 

  123. Chao TF, Liu CJ, Wang KL, et al. Should atrial fibrillation patients with 1 additional risk factor of the CHA2DS2-VASc score (beyond sex) receive oral anticoagulation? Amer Coll Cardiol. 2015;65(7):635–42. https://doi.org/10.1016/j.jacc.2014.11.046.

    Article  Google Scholar 

  124. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010;138(5):1093–100. https://doi.org/10.1378/chest.10-0134.

    Article  PubMed  Google Scholar 

  125. Lip GY, Frison L, Halperin JL, Lane DA. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. J Amer Coll Cardiol. 2011;57(2):173–80. https://doi.org/10.1016/j.jacc.2010.09.024.

    Article  CAS  Google Scholar 

  126. Roldán V, Marín F, Fernández H, et al. Predictive value of the HAS-BLED and ATRIA bleeding scores for the risk of serious bleeding in a “real-world” population with atrial fibrillation receiving anticoagulant therapy. Chest. 2013;143(1):179–84. https://doi.org/10.1378/chest.12-0608.

    Article  PubMed  Google Scholar 

  127. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857–67. https://doi.org/10.7326/0003-4819-146-12-200706190-00007.

    Article  PubMed  Google Scholar 

  128. Mant J, Hobbs FD, Fletcher K, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet. 2007;370(9586):493–503. https://doi.org/10.1016/s0140-6736(07)61233-1.

    Article  CAS  PubMed  Google Scholar 

  129. Andersen LV, Vestergaard P, Deichgraeber P, Lindholt JS, Mortensen LS, Frost L. Warfarin for the prevention of systemic embolism in patients with non-valvular atrial fibrillation: a meta-analysis. Heart. 2008;94(12):1607–13. https://doi.org/10.1136/hrt.2007.135657.

    Article  CAS  PubMed  Google Scholar 

  130. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62. https://doi.org/10.1016/s0140-6736(13)62343-0.

    Article  CAS  PubMed  Google Scholar 

  131. Renda G, Ricci F, Giugliano RP, De Caterina R. Non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation and valvular heart disease. J Amer Coll Cardiol. 2017;69(11):1363–71. https://doi.org/10.1016/j.jacc.2016.12.038.

    Article  Google Scholar 

  132. Breithardt G. NOACs for stroke prevention in atrial fibrillation with valve disease: filling the gaps. J Amer Coll Cardiol. 2017;69(11):1383–5. https://doi.org/10.1016/j.jacc.2017.01.012.

    Article  Google Scholar 

  133. Lip GY, Skjøth F, Rasmussen LH, Larsen TB. Oral anticoagulation, aspirin, or no therapy in patients with nonvalvular AF with 0 or 1 stroke risk factor based on the CHA2DS2-VASc score. J Amer Coll Cardiol. 2015;65(14):1385–94. https://doi.org/10.1016/j.jacc.2015.01.044.

    Article  CAS  Google Scholar 

  134. Lopes RD, Al-Khatib SM, Wallentin L, et al. Efficacy and safety of apixaban compared with warfarin according to patient risk of stroke and of bleeding in atrial fibrillation: a secondary analysis of a randomised controlled trial. Lancet. 2012;380(9855):1749–58. https://doi.org/10.1016/s0140-6736(12)60986-6.

    Article  CAS  PubMed  Google Scholar 

  135. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.

    Article  CAS  PubMed  Google Scholar 

  136. Coleman CI, Briere JB, Fauchier L, et al. Meta-analysis of real-world evidence comparing non-vitamin K antagonist oral anticoagulants with vitamin K antagonists for the treatment of patients with non-valvular atrial fibrillation. JMAHP. 2019;7(1):1574541. https://doi.org/10.1080/20016689.2019.1574541.

    Article  PubMed  PubMed Central  Google Scholar 

  137. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2019;16(8):e66–93. https://doi.org/10.1016/j.hrthm.2019.01.024.

    Article  PubMed  Google Scholar 

  138. Sulzgruber P, Wassmann S, Semb AG, et al. Oral anticoagulation in patients with non-valvular atrial fibrillation and a CHA2DS2-VASc score of 1: a current opinion of the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy and European Society of Cardiology Council on Stroke. Eur Heart J Cardiovasc Pharmacol. 2019;5(3):171–80. https://doi.org/10.1093/ehjcvp/pvz016.

    Article  Google Scholar 

  139. Lin YS, Chen YL, Chen TH, et al. Comparison of clinical outcomes among patients with atrial fibrillation or atrial flutter stratified by CHA2DS2-VASc Score. JAMA Netw Open. 2018;1(4):e180941. https://doi.org/10.1001/jamanetworkopen.2018.0941.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Ganesan AN, Chew DP, Hartshorne T, et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: a systematic review and meta-analysis. Eur Heart J. 2016;37(20):1591–602. https://doi.org/10.1093/eurheartj/ehw007.

    Article  PubMed  Google Scholar 

  141. Hijazi Z, Oldgren J, Lindbäck J, et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet. 2016;387(10035):2302–11. https://doi.org/10.1016/s0140-6736(16)00741-8.

    Article  CAS  PubMed  Google Scholar 

  142. Andrade JG, Aguilar M, Atzema C, et al. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society comprehensive guidelines for the management of atrial fibrillation. Can J Cardiol. 2020;36(12):1847–948. https://doi.org/10.1016/j.cjca.2020.09.001.

    Article  PubMed  Google Scholar 

  143. Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg. 1996;61(2):755–9. https://doi.org/10.1016/0003-4975(95)00887-x.

    Article  CAS  PubMed  Google Scholar 

  144. Reddy VY, Sievert H, Halperin J, et al. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: a randomized clinical trial. JAMA. 2014;312(19):1988–98. https://doi.org/10.1001/jama.2014.15192.

    Article  CAS  PubMed  Google Scholar 

  145. Holmes DR Jr, Kar S, Price MJ, et al. Prospective randomized evaluation of the Watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J Amer Coll Cardiol. 2014;64(1):1–12. https://doi.org/10.1016/j.jacc.2014.04.029.

    Article  Google Scholar 

  146. Holmes DR Jr, Doshi SK, Kar S, et al. Left atrial appendage closure as an alternative to warfarin for stroke prevention in atrial fibrillation: a patient-level meta-analysis. J Amer Coll Cardiol. 2015;65(24):2614–23. https://doi.org/10.1016/j.jacc.2015.04.025.

    Article  Google Scholar 

  147. Kar S, Doshi SK, Sadhu A, et al. Primary outcome evaluation of a next-generation left atrial appendage closure device: results from the PINNACLE FLX Trial. Circulation. 2021;143(18):1754–62. https://doi.org/10.1161/circulationaha.120.050117.

    Article  CAS  PubMed  Google Scholar 

  148. Lakkireddy D, Thaler D, Ellis CR, et al. Amplatzer amulet left atrial appendage occluder versus watchman device for stroke prophylaxis (Amulet Ide): a randomized controlled trial. Circulation. 2021;144(19):1543–52. https://doi.org/10.1161/circulationaha.121.057063.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Whitlock RP, Belley-Cote EP, Paparella D, et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N Engl J Med. 2021;384(22):2081–91. https://doi.org/10.1056/NEJMoa2101897.

    Article  PubMed  Google Scholar 

  150. Aryana A, Singh SK, Singh SM, O’Neill PG, Bowers MR, Allen SL, Lewandowski SL, Vierra EC, d’Avila A. Association between incomplete surgical ligation of left atrial appendage and stroke and systemic embolization. Heart Rhythm. 2015;12(7):1431–7. https://doi.org/10.1016/j.hrthm.2015.03.028 (Epub 2015 May 18 PMID: 25998141).

    Article  PubMed  Google Scholar 

  151. Viles-Gonzalez JF, Kar S, Douglas P, Dukkipati S, Feldman T, Horton R, Holmes D, Reddy VY. The clinical impact of incomplete left atrial appendage closure with the Watchman Device in patients with atrial fibrillation: a PROTECT AF (Percutaneous Closure of the Left Atrial Appendage Versus Warfarin Therapy for Prevention of Stroke in Patients With Atrial Fibrillation) substudy. J Am Coll Cardiol. 2012;59(10):923–9. https://doi.org/10.1016/j.jacc.2011.11.028 (PMID: 22381428).

    Article  PubMed  Google Scholar 

  152. Saw J. Intracardiac echocardiography for endovascular left atrial appendage closure: is it ready for primetime? JACC Cardiovasc Interv. 2017;10(21):2207–10. https://doi.org/10.1016/j.jcin.2017.07.002 (Epub 2017 Aug 30 PMID: 28866032).

    Article  PubMed  Google Scholar 

  153. Hornung M Gafoor S Id D Vaskelyte L Hofmann I Franke et al. Catheter-based closure of residual leaks after percutaneous occlusion of the left atrial appendage. Catheter Cardiovasc Interv. 2016 Jun;87(7):1324-30. https://doi.org/10.1002/ccd.26318. Epub 2015 Dec 23. PMID: 26698175

  154. Della Rocca DG, Horton RP, Di Biase L, Bassiouny M, Al-Ahmad A, Mohanty S, Gasperetti A, Natale VN, Trivedi C, Gianni C, Burkhardt JD, Gallinghouse GJ, Hranitzky P, Sanchez JE, Natale A. first experience of transcatheter leak occlusion with detachable coils following left atrial appendage closure. JACC Cardiovasc Interv. 2020;13(3):306–19. https://doi.org/10.1016/j.jcin.2019.10.022 (Epub 2020 Jan 15 PMID: 31954677).

    Article  PubMed  Google Scholar 

  155. Duthoit G Silvain J Marijon E Ducrocq G Lepillier A Frere C et al. Reduced rivaroxaban dose versus dual antiplatelet therapy after left atrial appendage closure: ADRIFT a randomized pilot study. Circ Cardiovasc Interv 2020 Jul;13(7):e008481. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008481. Epub 2020 Jul 17. PMID: 32674675.

  156. Della Rocca DG, Magnocavallo M, Di Biase L, Mohanty S, Trivedi C, Tarantino N, et al. Half-dose direct oral anticoagulation versus standard antithrombotic therapy after left atrial appendage occlusion. JACC Cardiovasc Interv. 2021;14(21):2353–64. https://doi.org/10.1016/j.jcin.2021.07.031 (Epub 2021 Oct 13 PMID: 34656496).

    Article  PubMed  Google Scholar 

  157. Osmancik P, Herman D, Neuzil P, Hala P, Taborsky M, Kala P, et al. PRAGUE-17 Trial Investigators Left atrial appendage closure versus direct oral anticoagulants in high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2020;75(25):3122–35. https://doi.org/10.1016/j.jacc.2020.04.067 (PMID: 32586585).

    Article  CAS  PubMed  Google Scholar 

  158. Osmancik P Herman D Neuzil P Hala P Taborsky M Kala P. et al. Poloczek M, Stasek J, PRAGUE-17 Trial Investigators. 4-year outcomes after left atrial appendage closure versus nonwarfarin oral anticoagulation for atrial fibrillation. J Am Coll Cardiol. 2022 Jan 4;79(1):1–14. https://doi.org/10.1016/j.jacc.2021.10.023. Epub 2021 Nov 5. PMID: 34748929.

  159. Dörr M, Nohturfft V, Brasier N, Bosshard E, Djurdjevic A, Gross S, Raichle CJ, Rhinisperger M, Stöckli R, Eckstein J. The WATCH AF Trial: smartWATCHes for detection of atrial fibrillation. JACC Clin Electrophysiol. 2019;5(2):199–208. https://doi.org/10.1016/j.jacep.2018.10.006 (Epub 2018 Nov 28 PMID: 30784691).

    Article  PubMed  Google Scholar 

  160. Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381(20):1909–17. https://doi.org/10.1056/NEJMoa1901183.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Svennberg E, Friberg L, Frykman V, Al-Khalili F, Engdahl J, Rosenqvist M. Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial. Lancet. 2021;398(10310):1498–506. https://doi.org/10.1016/S0140-6736(21)01637-8 (Epub 2021 Aug 29 PMID: 34469764).

    Article  PubMed  Google Scholar 

  162. Svendsen JH Diederichsen SZ Højberg S Krieger DW,Graff C Kronborg C Olesen MS Nielsen JB Holst AG Brandes A Haugan KJ Køber L. Implantable loop recorder detection of atrial fibrillation to prevent stroke (the LOOP Study): a randomised controlled trial. Lancet. 2021 Oct 23;398(10310):1507–1516. https://doi.org/10.1016/S0140-6736(21)01698-6. Epub 2021 Aug 29. Erratum in: Lancet. 2021 Oct 23;398(10310):1486. PMID: 34469766.

  163. Vaughan Williams EM. Significance of classifying antiarrhythmic actions since the cardiac arrhythmia suppression trial. J of Clin Pharmacol. 1991;31(2):123–35. https://doi.org/10.1002/j.1552-4604.1991.tb03695.x.

    Article  CAS  Google Scholar 

  164. Prystowsky EN, Freeland S, Branyas NA, Rardon DP, Fogel RI, Padanilam BJ, Rippy JS. Clinical experience with dofetilide in the treatment of patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14(12 Suppl):S287–90. https://doi.org/10.1046/j.1540-8167.2003.90402.x (PMID: 15005216).

    Article  PubMed  Google Scholar 

  165. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial N Engl J Med. 1991;324(12):781–8. https://doi.org/10.1056/nejm199103213241201.

    Article  CAS  PubMed  Google Scholar 

  166. Hansen ML, Jepsen RM, Olesen JB, et al. Thromboembolic risk in 16 274 atrial fibrillation patients undergoing direct current cardioversion with and without oral anticoagulant therapy. Europace. 2015;17(1):18–23. https://doi.org/10.1093/europace/euu189 (Epub 2014 Sep 17 PMID: 25231909).

    Article  PubMed  Google Scholar 

  167. Nair M, George LK, Koshy SK. Safety and efficacy of ibutilide in cardioversion of atrial flutter and fibrillation. J Am Board Fam Med. 2011;24(1):86–92. https://doi.org/10.3122/jabfm.2011.01.080096.

    Article  PubMed  Google Scholar 

  168. European Medicines Agency. Summary of product characteristics: vernakalant. https://www.ema.europa.eu/documents/product-information/brinavess-epar-product-information_en.pdf. Accessed October 02, 2019.

  169. Lévy S, Hartikainen J, Ritz B, Juhlin T, Carbajosa-Dalmau J, Domanovits H. Vernakalant for rapid cardioversion of recent-onset atrial fibrillation: results from the SPECTRUM Study. Cardiovasc Drugs Ther. 2021;35(2):283–92. https://doi.org/10.1007/s10557-020-07103-9.

    Article  PubMed  Google Scholar 

  170. Capucci A, Lenzi T, Boriani G, et al. Effectiveness of loading oral flecainide for converting recent-onset atrial fibrillation to sinus rhythm in patients without organic heart disease or with only systemic hypertension. Amer J Cardiol. 1992;70(1):69–72. https://doi.org/10.1016/0002-9149(92)91392-h.

    Article  CAS  PubMed  Google Scholar 

  171. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962. https://doi.org/10.1093/eurheartj/ehw210.

    Article  PubMed  Google Scholar 

  172. Lafuente-Lafuente C Longas-Tejero MA Bergmann JF Belmin J. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst. Rev. 2012; (5): Cd005049. https://doi.org/10.1002/14651858.CD005049.pub3

  173. Gosselink AT, Crijns HJ, Van Gelder IC, Hillige H, Wiesfeld AC, Lie KI. Low-dose amiodarone for maintenance of sinus rhythm after cardioversion of atrial fibrillation or flutter. JAMA. 1992;267(24):3289–93.

    Article  CAS  Google Scholar 

  174. Singh BN, Singh SN, Reda DJ, et al. Amiodarone versus sotalol for atrial fibrillation. New Engl J Med. 2005;352(18):1861–72. https://doi.org/10.1056/NEJMoa041705.

    Article  CAS  PubMed  Google Scholar 

  175. Roy D, Talajic M, Thibault B, et al. Pilot study and protocol of the Canadian Trial of Atrial Fibrillation (CTAF). Amer J Cardiol. 1997;80(4):464–8. https://doi.org/10.1016/s0002-9149(97)00396-2.

    Article  CAS  PubMed  Google Scholar 

  176. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Sword Invest Surv With Oral d-Sotalol Lancet. 1996;348(9019):7–12.

    CAS  Google Scholar 

  177. Shenasa F, Shenasa M. Dofetilide: electrophysiologic effect, efficacy, and safety in patients with cardiac arrhythmias. Card Electrophysiol Clin. 2016;8(2):423–36. https://doi.org/10.1016/j.ccep.2016.02.006.

    Article  PubMed  Google Scholar 

  178. Pedersen OD, Brendorp B, Køber L, Torp-Pedersen C. Prevalence, prognostic significance, and treatment of atrial fibrillation in congestive heart failure with particular reference to the DIAMOND-CHF study. Congest Heart Fail. 2003;9(6):333–40. https://doi.org/10.1111/j.1527-5299.2003.01238.x.

    Article  PubMed  Google Scholar 

  179. Køber L, Bloch Thomsen PE, Møller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet. 2000;356(9247):2052–8. https://doi.org/10.1016/s0140-6736(00)03402-4.

    Article  PubMed  Google Scholar 

  180. Thind M, Crijns HJ, Naccarelli GV, et al. Dronedarone treatment following cardioversion in patients with atrial fibrillation/flutter: a post hoc analysis of the EURIDIS and ADONIS trials. J Cardiovasc Electrophysiol. 2020;31(5):1022–30. https://doi.org/10.1111/jce.14405.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hohnloser SH, Crijns HJ, van Eickels M, et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med. 2009;360(7):668–78. https://doi.org/10.1056/NEJMoa0803778.

    Article  CAS  PubMed  Google Scholar 

  182. Køber L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358(25):2678–87. https://doi.org/10.1056/NEJMoa0800456.

    Article  PubMed  Google Scholar 

  183. Le Heuzey JY, De Ferrari GM, Radzik D, Santini M, Zhu J, Davy JM. A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the DIONYSOS study. J Cardiovasc Electrophysiol. 2010;21(6):597–605. https://doi.org/10.1111/j.1540-8167.2010.01764.x.

    Article  PubMed  Google Scholar 

  184. Connolly SJ, Camm AJ, Halperin JL, et al. Dronedarone in high-risk permanent atrial PALLAS Investigators Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med. 2011;365(24):2268–76.

    Article  CAS  Google Scholar 

  185. Vamos M Calkins H Kowey PR Torp-Pedersen CT Corp Dit Genti V Wieloch M Koren A Hohnloser SH. Efficacy and safety of dronedarone in patients with a prior ablation for atrial fibrillation/flutter: insights from the ATHENA study. Clin Cardiol. 2020 Mar;43(3):291–297. https://doi.org/10.1002/clc.23309. Epub 2019 Dec 24. PMID: 31872901; PMCID: PMC7068068.

  186. Kay GN, Ellenbogen KA, Giudici M, Redfield MM, Jenkins LS, Mianulli M, Wilkoff B. The Ablate and Pace Trial: a prospective study of catheter ablation of the AV conduction system and permanent pacemaker implantation for treatment of atrial fibrillation APT Investigators. J Interv Card Electrophysiol. 1998;2(2):121–35. https://doi.org/10.1023/a:1009795330454 (PMID: 9870004).

    Article  CAS  PubMed  Google Scholar 

  187. Ganesan AN, Brooks AG, Roberts-Thomson KC, Lau DH, Kalman JM, Sanders P. Role of AV nodal ablation in cardiac resynchronization in patients with coexistent atrial fibrillation and heart failure a systematic review. J Am Coll Cardiol. 2012;59(8):719–26. https://doi.org/10.1016/j.jacc.2011.10.891 (PMID: 22340263).

    Article  PubMed  Google Scholar 

  188. Huang W, Wu S, Vijayaraman P, et al. Cardiac resynchronization therapy in patients with nonischemic cardiomyopathy using left bundle branch pacing. JACC Clin Electrophysiol. 2020;6(7):849–58. https://doi.org/10.1016/j.jacep.2020.04.011 (PMID: 32703568).

    Article  PubMed  Google Scholar 

  189. Brignole M Pentimalli F Palmisano P Landolina M Quartieri F Occhetta E Calò L Mascia G Mont L Vernooy K van Dijk V Allaart C Fauchier L Gasparini M Parati G Soranna D Rienstra M Van Gelder IC; APAF-CRT Trial Investigators. AV junction ablation and cardiac resynchronization for patients with permanent atrial fibrillation and narrow QRS: the APAF-CRT mortality trial. Eur Heart J. 2021 Dec 7;42(46):4731–4739. https://doi.org/10.1093/eurheartj/ehab569. Erratum in: Eur Heart J. 2021 Oct 16;: Erratum in: Eur Heart J. 2021 Dec 08;: PMID: 34453840.

  190. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med. 2008;358(25):2667–77. https://doi.org/10.1056/NEJMoa0708789.

    Article  CAS  PubMed  Google Scholar 

  191. Kirchhof P, Camm AJ, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383(14):1305–16. https://doi.org/10.1056/NEJMoa2019422.

    Article  PubMed  Google Scholar 

  192. Yang E Tang O Metkus T Berger RD Spragg DD Calkins HG Marine JE. The role of timing in treatment of atrial fibrillation: an AFFIRM substudy. Heart Rhythm. 2021 May;18(5):674–681. https://doi.org/10.1016/j.hrthm.2020.12.025. Epub 2020 Dec 28. PMID: 33383228. 5

  193. Pluymaekers N, Dudink E, Luermans J, et al. Early or delayed cardioversion in recent-onset atrial fibrillation. N Engl J Med. 2019;380(16):1499–508. https://doi.org/10.1056/NEJMoa1900353.

    Article  PubMed  Google Scholar 

  194. Gillinov AM, Bagiella E, Moskowitz AJ, et al. Rate control versus rhythm control for atrial fibrillation after cardiac surgery. N Engl J Med. 2016;374(20):1911–21. https://doi.org/10.1056/NEJMoa1602002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ponikowski P, Voors AA, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  Google Scholar 

  196. Lam CS, Solomon SD. The middle child in heart failure: heart failure with mid-range ejection fraction (40–50%). Eur J Heart Fail. 2014;16(10):1049–55. https://doi.org/10.1002/ejhf.159.

    Article  PubMed  Google Scholar 

  197. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. J Amer Coll Cardiol. 2017;70(6):776–803. https://doi.org/10.1016/j.jacc.2017.04.025.

    Article  Google Scholar 

  198. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444. https://doi.org/10.1016/j.hrthm.2017.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Saksena S, Skadsberg ND, Rao HB, Filipecki A. Biatrial and three-dimensional mapping of spontaneous atrial arrhythmias in patients with refractory atrial fibrillation. J Cardiovasc Electrophysiol. 2005;16(5):494–504. https://doi.org/10.1111/j.1540-8167.2005.40531.x.

    Article  PubMed  Google Scholar 

  200. Haissaguerre M, Hocini M, Denis A, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8. https://doi.org/10.1161/circulationaha.113.005421.

    Article  PubMed  Google Scholar 

  201. Schricker AA, Lalani GG, Krummen DE, Rappel WJ, Narayan SM. Human atrial fibrillation initiates via organized rather than disorganized mechanisms. Circ Arrhyth Electrophysiol. 2014;7(5):816–24. https://doi.org/10.1161/circep.113.001289.

    Article  Google Scholar 

  202. Saksena S, Hettrick DA, Koehler JL, Grammatico A, Padeletti L. Progression of paroxysmal atrial fibrillation to persistent atrial fibrillation in patients with bradyarrhythmias. Amer Heart J. 2007;154(5):884–92. https://doi.org/10.1016/j.ahj.2007.06.045.

    Article  PubMed  Google Scholar 

  203. Obokata M, Olson TP, Reddy YNV, Melenovsky V, Kane GC, Borlaug BA. Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur Heart J. 2018;39(30):2810–21. https://doi.org/10.1093/eurheartj/ehy268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gorter TM, Obokata M, Reddy YNV, Melenovsky V, Borlaug BA. Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease. Eur Heart J. 2018;39(30):2825–35. https://doi.org/10.1093/eurheartj/ehy331.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Santos AB, Roca GQ, Claggett B, et al. Prognostic Relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail. 2016;9(4):e002763. https://doi.org/10.1161/circheartfailure.115.002763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shah AM, Shah SJ, Anand IS, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail. 2014;7(1):104–15. https://doi.org/10.1161/circheartfailure.113.000887.

    Article  CAS  PubMed  Google Scholar 

  207. Koufou EE Arfaras-Melainis A Rawal S Kalogeropoulos AP. Treatment of heart failure with mid-range ejection fraction: what is the evidence? J Clin Med 2021; 10(2). https://doi.org/10.3390/jcm10020203

  208. Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J. 2019;40(40):3297–317. https://doi.org/10.1093/eurheartj/ehz641.

    Article  PubMed  Google Scholar 

  209. Sartipy U, Dahlström U, Fu M, Lund LH. Atrial fibrillation in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Fail. 2017;5(8):565–74. https://doi.org/10.1016/j.jchf.2017.05.001.

    Article  PubMed  Google Scholar 

  210. Savarese G, Stolfo D, Sinagra G, Lund LH. Heart failure with mid-range or mildly reduced ejection fraction. Nat Rev Cardiol. 2022;19(2):100–16. https://doi.org/10.1038/s41569-021-00605-5.

    Article  PubMed  Google Scholar 

  211. Cikes M, Claggett B, Shah AM, et al. Atrial fibrillation in heart failure with preserved ejection fraction: the TOPCAT Trial. JACC Heart failure. 2018;6(8):689–97. https://doi.org/10.1016/j.jchf.2018.05.005.

    Article  PubMed  Google Scholar 

  212. Olsson LG, Swedberg K, Ducharme A, et al. Atrial fibrillation and risk of clinical events in chronic heart failure with and without left ventricular systolic dysfunction: results from the Candesartan in Heart failure-Assessment of Reduction in Mortality and morbidity (CHARM) program. J Amer Coll Cardiol. 2006;47(10):1997–2004. https://doi.org/10.1016/j.jacc.2006.01.060.

    Article  Google Scholar 

  213. Saksena S Slee A. Antiarrhythmic drug therapy for atrial fibrillation complicating heart failure with preserved cardiac function: first clinical trial experience from the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) Americas Trial Substudy. Heart Rhythm 2020; 17(5) (Abstract).

  214. Saksena S Slee A Lakkireddy DJ et al. Predictors of adverse cardiovascular outcomes in patients with atrial fibrillation and heart failure with preserved systolic function: a TOPCAT Americas post hoc analysis. https://www.ahajournals.org/doi/10.1161/circ.142.suppl_3.15198.

  215. Machino-Ohtsuka T, Seo Y, Ishizu T, et al. Efficacy, safety, and outcomes of catheter ablation of atrial fibrillation in patients with heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;62(20):1857–65. https://doi.org/10.1016/j.jacc.2013.07.020 (Epub 2013 Jul 31PMID: 239169402).

    Article  PubMed  Google Scholar 

  216. McMurray JJV, Jackson AM, Lam CSP, et al. Effects of sacubitril-valsartan versus valsartan in women compared with men with heart failure and preserved ejection fraction: insights from PARAGON-HF. Circulation. 2020;141(5):338–51. https://doi.org/10.1161/circulationaha.119.044491.

    Article  PubMed  Google Scholar 

  217. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  PubMed  Google Scholar 

  218. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. New Engl J Med. 2020;383(15):1413–24. https://doi.org/10.1056/NEJMoa2022190.

    Article  CAS  PubMed  Google Scholar 

  219. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. New Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303.

    Article  CAS  PubMed  Google Scholar 

  220. Santhanakrishnan R, Wang N, Larson MG, et al. Atrial fibrillation begets heart failure and vice versa: temporal associations and differences in preserved versus reduced ejection fraction. Circulation. 2016;133(5):484–92. https://doi.org/10.1161/circulationaha.115.018614.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Amer J Med. 2002;113(5):359–64. https://doi.org/10.1016/s0002-9343(02)01236-6.

    Article  PubMed  Google Scholar 

  222. Black-Maier E, Ren X, Steinberg BA, et al. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction. Heart Rhythm. 2018;15(5):651–7. https://doi.org/10.1016/j.hrthm.2017.12.001.

    Article  PubMed  Google Scholar 

  223. Di Biase L, Mohanty P, Mohanty S, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation. 2016;133(17):1637–44. https://doi.org/10.1161/circulationaha.115.019406.

    Article  PubMed  Google Scholar 

  224. Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378(5):417–27. https://doi.org/10.1056/NEJMoa1707855.

    Article  PubMed  Google Scholar 

  225. Packer DL, Piccini JP, Monahan KH, et al. Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA Trial. Circulation. 2021;143(14):1377–90. https://doi.org/10.1161/circulationaha.120.050991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kuck KH, Merkely B, Zahn R, et al. Catheter ablation versus best medical therapy in patients with persistent atrial fibrillation and congestive heart failure: the randomized AMICA Trial. Circ Arrhythm Electrophysiol. 2019;12(12):e007731. https://doi.org/10.1161/circep.119.007731.

    Article  PubMed  Google Scholar 

  227. Gentlesk PJ, Sauer WH, Gerstenfeld EP, et al. Reversal of left ventricular dysfunction following ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(1):9–14.

    Article  Google Scholar 

  228. Vitali F Serenelli M Airaksinen J Pavasini R Tomaszuk-Kazberuk A Mlodawska E Jaakkola S Balla C Falsetti L Tarquinio N Ferrari R Squeri A Campo G Bertini M. CHA2DS2-VASc score predicts atrial fibrillation recurrence after cardioversion: systematic review and individual patient pooled meta-analysis. Clin Cardiol. 2019 Mar;42(3):358–364. https://doi.org/10.1002/clc.23147. Epub 2019 Feb 11. PMID: 30597581; PMCID: PMC6712331.

  229. Hunter RJ, Berriman TJ, Diab I, et al. A randomized controlled trial of catheter ablation versus medical treatment of atrial fibrillation in heart failure (the CAMTAF trial). Circ Arrhythm Electrophysiol. 2014;7(1):31–8. https://doi.org/10.1161/circep.113.000806.

    Article  CAS  PubMed  Google Scholar 

  230. Khan MN, Jaïs P, Cummings J, et al. Pulmonary-vein isolation for atrial fibrillation in patients with heart failure. N Engl J of Med. 2008;359(17):1778–85. https://doi.org/10.1056/NEJMoa0708234.

    Article  CAS  Google Scholar 

  231. Kotecha D, Piccini JP. Atrial fibrillation in heart failure: what should we do? Eur Heart J. 2015;36(46):3250–7. https://doi.org/10.1093/eurheartj/ehv513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Haïssaguerre M, Shah DC, Jaïs P, et al. Electrophysiological breakthroughs from the left atrium to the pulmonary veins. Circulation. 2000;102(20):2463–5. https://doi.org/10.1161/01.cir.102.20.2463.

    Article  PubMed  Google Scholar 

  233. Pappone C, Oreto G, Lamberti F, et al. Catheter ablation of paroxysmal atrial fibrillation using a 3D mapping system. Circulation. 1999;100(11):1203–8. https://doi.org/10.1161/01.cir.100.11.1203.

    Article  CAS  PubMed  Google Scholar 

  234. Marrouche NF, Dresing T, Cole C, et al. Circular mapping and ablation of the pulmonary vein for treatment of atrial fibrillation: impact of different catheter technologies. J Amer Coll Cardiol. 2002;40(3):464–74. https://doi.org/10.1016/s0735-1097(02)01972-1.

    Article  Google Scholar 

  235. Oral H, Knight BP, Ozaydin M, et al. Clinical significance of early recurrences of atrial fibrillation after pulmonary vein isolation. J Amer Coll Cardiol. 2002;40(1):100–4. https://doi.org/10.1016/s0735-1097(02)01939-3.

    Article  Google Scholar 

  236. Cappato R, Negroni S, Pecora D, et al. Prospective assessment of late conduction recurrence across radiofrequency lesions producing electrical disconnection at the pulmonary vein ostium in patients with atrial fibrillation. Circulation. 2003;108(13):1599–604. https://doi.org/10.1161/01.cir.0000091081.19465.f1.

    Article  PubMed  Google Scholar 

  237. Pappone C, Oreto G, Rosanio S, et al. Atrial electroanatomic remodeling after circumferential radiofrequency pulmonary vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation. Circulation. 2001;104(21):2539–44. https://doi.org/10.1161/hc4601.098517.

    Article  CAS  PubMed  Google Scholar 

  238. Ho SY, Sánchez-Quintana D. The importance of atrial structure and fibers. Clin Anat. 2009;22(1):52–63. https://doi.org/10.1002/ca.20634.

    Article  CAS  PubMed  Google Scholar 

  239. Kistler PM, Ho SY, Rajappan K, et al. Electrophysiologic and anatomic characterization of sites resistant to electrical isolation during circumferential pulmonary vein ablation for atrial fibrillation: a prospective study. J Cardiovasc Electrophysiol. 2007;18(12):1282–8. https://doi.org/10.1111/j.1540-8167.2007.00981.x.

    Article  PubMed  Google Scholar 

  240. Neuzil P, Reddy VY, Kautzner J, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhyth Electrophysiol. 2013;6(2):327–33. https://doi.org/10.1161/circep.113.000374.

    Article  Google Scholar 

  241. Hoffmann P Diaz Ramirez I Baldenhofer G Stangl K Mont L Althoff TF. Randomized study defining the optimum target interlesion distance in ablation index-guided atrial fibrillation ablation. Europace 20; 22(10): 1480–6. https://doi.org/10.1093/europace/euaa147

  242. Gianni C, Chen Q, Della Rocca D, et al. Radiofrequency balloon devices for atrial fibrillation ablation. Card Electrophysiol Clin. 2019;11(3):487–93. https://doi.org/10.1016/j.ccep.2019.05.009.

    Article  PubMed  Google Scholar 

  243. Reddy VY, Pollak S, Lindsay BD, et al. Relationship between catheter stability and 12-month success after pulmonary vein isolation: a Subanalysis of the SMART-AF Trial. JACC Clin Electrophysiol. 2016;2(6):691–9. https://doi.org/10.1016/j.jacep.2016.07.014.

    Article  PubMed  Google Scholar 

  244. Taghji P, El Haddad M, Phlips T, Wolf M, Knecht S, Vandekerckhove Y, et al. Evaluation of a strategy aiming to enclose the pulmonary veins with contiguous and optimized radiofrequency lesions in paroxysmal atrial fibrillation: a pilot study. JACC Clin Electrophysiol. 2018;4:99–108.

    Article  Google Scholar 

  245. Reddy VY, Grimaldi M, De Potter T, et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST Trial. JACC Clin Electrophysiol. 2019;5(7):778–86. https://doi.org/10.1016/j.jacep.2019.04.009.

    Article  PubMed  Google Scholar 

  246. Leshem E, Zilberman I, Tschabrunn CM, Barkagan M, Contreras-Valdes FM, Govari A, Anter E. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol. 2018;4:467–79.

    Article  Google Scholar 

  247. Schoene K, Arya A, Grashoff F, et al. Oesophageal probe evaluation in radiofrequency ablation of atrial fibrillation (OPERA): results from a prospective randomized trial. Europace Cardiol. 2020;22(10):1487–94. https://doi.org/10.1093/europace/euaa209.

    Article  Google Scholar 

  248. Wazni OM, Dandamudi G, Sood N, et al. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021;384(4):316–24. https://doi.org/10.1056/NEJMoa2029554.

    Article  CAS  PubMed  Google Scholar 

  249. Knight BP Novak PG Sangrigoli R and the STOP-AF Investigators. Long-term outcomes after ablation for paroxysmal atrial fibrillation using the second-generation cryoballoon: final results from STOP-AF post-approval study. JACC Clin Electrophysiol. 2019;5(3):306–314. https://doi.org/10.1016/j.jacep.2018.11.006. epub 2018 dec 26.

  250. Kuck KH, Fürnkranz A, Chun KR, et al. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur Heart J. 2016;37(38):2858–65. https://doi.org/10.1093/eurheartj/ehw285.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Kuck KH, Brugada J, Fürnkranz A, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374(23):2235–45. https://doi.org/10.1056/NEJMoa1602014.

    Article  PubMed  Google Scholar 

  252. Verma A, Jiang CY, Betts TR, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22. https://doi.org/10.1056/NEJMoa1408288.

    Article  PubMed  Google Scholar 

  253. Di Biase L, Burkhardt JD, Mohanty P, et al. Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF Trial. J Am Coll Cardiol. 2016;68(18):1929–40. https://doi.org/10.1016/j.jacc.2016.07.770.

    Article  PubMed  Google Scholar 

  254. Valderrabano M, Peterson LE, Schurmann PA, et al. Effect of catheter ablation with vein of Marshall ethanol infusion vs catheter ablation alone on persistent atrial fibrillation: the VENUS Randomized Clinical Trial. JAMA. 2020;324:1620–8.

    Article  Google Scholar 

  255. Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H, Sediva L, Chovanec M, Dukkipati SR, Jais P. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol. 2019;74(3):315–26. https://doi.org/10.1016/j.jacc.2019.04.021 (Epub 2019 May 11 PMID: 31085321).

    Article  PubMed  Google Scholar 

  256. Hardy C, Rivarola E, Scanavacca M. Role of ganglionated plexus ablation in atrial fibrillation on the basis of supporting evidence. J Atr Fibrillation. 2020;13:2405.

    Article  Google Scholar 

  257. Pappone C, Santinelli V, Manguso F, Vicedomini G, Gugliotta F, Augello G, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109(3):327–34. https://doi.org/10.1161/01.CIR.0000112641.16340.C7 (Epub 2004 Jan 5 PMID: 14707026).

    Article  PubMed  Google Scholar 

  258. Scanavacca M, Pisani CF, Hachul D, Lara S, Hardy C, Darrieux F, et al. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation. 2006;114(9):876–85.

    Article  Google Scholar 

  259. Kampaktsis PN Oikonomou EK D YC Cheung JW. Efficacy of ganglionated plexi ablation in addition to pulmonary vein isolation for paroxysmal versus persistent atrial fibrillation: a meta-analysis of randomized controlled clinical trials. J Interv Card Electrophysiol. 2017;50(3):253-260

  260. Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA. 2020;323(3):248–55.

    Article  Google Scholar 

  261. van der Heijden CAJ, Vroomen M, Luermans JG, Vos R, Crijns H, Gelsomino S, La Meir M, Pison L, Maesen B. Hybrid versus catheter ablation in patients with persistent and longstanding persistent atrial fibrillation: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2019;56:433–43.

    Article  Google Scholar 

  262. Briceño DF, Patel K, Romero J, Alviz I, Tarantino N, Della Rocca DG, Natale V, Zhang XD, Di Biase L. Beyond pulmonary vein isolation in nonparoxysmal atrial fibrillation: posterior wall, vein of Marshall, coronary sinus, superior vena cava, and left atrial appendage. Card Electrophysiol Clin. 2020;12(2):219–31. https://doi.org/10.1016/j.ccep.2020.01.002 (PMID: 32451106).

    Article  PubMed  Google Scholar 

  263. Kim D, Hwang T, Kim M, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Extra-pulmonary vein triggers at de novo and the repeat atrial fibrillation catheter ablation. Front Cardiovasc Med. 2021;4(8):759967. https://doi.org/10.3389/fcvm.2021.759967.PMID:34805314;PMCID:PMC8600078.

    Article  Google Scholar 

  264. Della Rocca DG, Tarantino N, Trivedi C, Mohanty S, Anannab A, Salvan AS, et al. Non pulmonary vein triggers in nonparoxysmal atrial fibrillation: implications of pathophysiology for catheter ablation. J Cardiovasc Electrophysiol. 2020;24(31):2154–67.

    Article  Google Scholar 

  265. Santangeli P. Marchinskli F E, Techniques for the provocation, localization, and ablation of non-pulmonary vein triggers for atrial fibrillation. Heart Rhythm. 2017;14:1087–96.

    Article  Google Scholar 

  266. Della Rocca DG, Di Biase L, Mohanty S, Trivedi C, Gianni C, Romero J, Tarantino N, Magnocavallo M, Bassiouny M, Natale VN, Mayedo AQ, Macdonald B, Lavalle C, Murtaza G, Akella K, Forleo GB, Al-Ahmad A, Burkhardt JD, Gallinghouse GJ, Sanchez JE, Horton RP, Viles-Gonzalez JF, Lakkireddy D, Natale A. Targeting non-pulmonary vein triggers in persistent atrial fibrillation: results from a prospective, multicentre, observational registry. Europace. 2021;23(12):1939–49. https://doi.org/10.1093/europace/euab161 (PMID: 34417816).

    Article  PubMed  Google Scholar 

  267. Park JW, Yu HT, Kim TH, Uhm JS, Joung B, Lee MH, Pak HN. Mechanisms of long-term recurrence 3 years after catheter ablation of atrial fibrillation. JACC Clin Electrophysiol. 2020;6(8):999–1007. https://doi.org/10.1016/j.jacep.2020.04.035 (PMID: 32819537).

    Article  PubMed  Google Scholar 

  268. Lee KN, Roh SY, Baek YS, Park HS, Ahn J, Kim DH, Lee DI, Shim J, Choi JI, Park SW, Kim YH. Long-term clinical comparison of procedural end points after pulmonary vein isolation in paroxysmal atrial fibrillation: elimination of nonpulmonary vein triggers versus noninducibility. Circ Arrhythm Electrophysiol. 2018;11(2):e005019. https://doi.org/10.1161/CIRCEP.117.005019 (PMID: 29431632).

    Article  PubMed  Google Scholar 

  269. Della Rocca DG, Mohanty S, Trivedi C, Di Biase L, Natale A. Percutaneous treatment of non- paroxysmal atrial fibrillation: a paradigm shift from pulmonary vein to non-pulmonary vein trigger ablation? Arrhythm Electrophysiol Rev. 2018;7:256–60.

    Article  Google Scholar 

  270. Tilz RR Lenz C Sommer P Roza MS Sarver AE Williams CG Heeger C Hindricks G Vogler J Eitel C. Focal impulse and rotor modulation ablation vs. pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation: results from the FIRMAP AF study. Europace. 2020 Dec 22:euaa378. Online ahead of print.

  271. Mohanty S, Mohanty P, Trivedi C, Gianni C, Della Rocca DG, Di Biase L, Natale A. Long-term outcome of pulmonary vein isolation with and without focal impulse and rotor modulation mapping: insights from a meta-analysis. Circ Arrhythm Electrophysiol. 2018;11:e005789. https://doi.org/10.1161/CIRCEP.117.005789.

    Article  PubMed  Google Scholar 

  272. Honarbakhsh S, Hunter RJ, Ullah W, Keating E, Finlay M, Schilling RJ. Ablation in persistent atrial fibrillation using stochastic trajectory analysis of ranked signals (STAR) mapping method. JACC Clin Electrophysiol. 2019;5:817–29.

    Article  Google Scholar 

  273. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation. 2005;8(11):1100–5. https://doi.org/10.1016/j.jacep.2019.04.007 (Epub 2019 May 8).

    Article  Google Scholar 

  274. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:32–8.

    Article  Google Scholar 

  275. Arbelo E, Brugada J, Hindricks G, Maggioni AP, Tavazzi L, Vardas P, et al. The atrial fibrillation ablation pilot study: a European survey on methodology and results of catheter ablation for atrial fibrillation conducted by the European Heart Rhythm Association. Eur Heart J. 2014;7(35):1466–78.

    Article  Google Scholar 

  276. Deshmuckh A Patel N J Pant S Shah N Chothani A Mehta K et al, In-hospital complications associated with catheter ablation of atrial fibrillation in the United States between 2000 and 2010: analysis of 93801 procedures Circulation 2013 nov 15;128:2104–12

  277. Steinbeck G, Sinner MF, Lutz M, Müller-Nurasyid M, Kãäb S, Reinecke H. Incidence of complications related to catheter ablation of atrial fibrillation and atrial flutter: a nationwide in-hospital analysis of administrative data for Germany in 2014. Eur Heart J. 2018;39:4020–9.

    Article  Google Scholar 

  278. Lévy S, Camm AJ, Saksena S, et al. International consensus on nomenclature and classification of atrial fibrillation; a collaborative project of the Working Group on Arrhythmias and the Working Group on Cardiac Pacing of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Europace. 2003;5(2):119–22. https://doi.org/10.1053/eupc.2002.0300.

    Article  PubMed  Google Scholar 

  279. Mela T. Smartwatches in the fight against atrial fibrillation: the little watch that could. J Am Coll Cardiol. 2018;71(21):2389–91. https://doi.org/10.1016/j.jacc.2018.03.485 (PMID: 29793627).

    Article  PubMed  Google Scholar 

  280. Kpaeyeh JA Jr, Wharton JM. Sotalol. Card Electrophysiol Clin. 2016;8(2):437–52. https://doi.org/10.1016/j.ccep.2016.02.007.

    Article  PubMed  Google Scholar 

  281. Ramak R, Chierchia GB, Paparella G, et al. Novel noncontact charge density map in the setting of post-atrial fibrillation atrial tachycardias: first experience with the Acutus SuperMap Algorithm. J Interv Card Electrophysiol. 2021;61(1):187–95. https://doi.org/10.1007/s10840-020-00808-9.

    Article  PubMed  Google Scholar 

  282. Chen MS, Marrouche NF, Khaykin Y, et al. Pulmonary vein isolation for the treatment of atrial fibrillation in patients with impaired systolic function. J Amer Coll Cardiol. 2004;43(6):1004–9. https://doi.org/10.1016/j.jacc.2003.09.056.

    Article  Google Scholar 

  283. MacDonald MR, Connelly DT, Hawkins NM, et al. Radiofrequency ablation for persistent atrial fibrillation in patients with advanced heart failure and severe left ventricular systolic dysfunction: a randomised controlled trial. Heart. 2011;97(9):740–7. https://doi.org/10.1136/hrt.2010.207340.

    Article  PubMed  Google Scholar 

  284. Jones DG, Haldar SK, Hussain W, et al. A randomized trial to assess catheter ablation versus rate control in the management of persistent atrial fibrillation in heart failure. J Amer Coll Cardiol. 2013;61(18):1894–903. https://doi.org/10.1016/j.jacc.2013.01.069.

    Article  Google Scholar 

  285. Hsu LF, Jaïs P, Sanders P, et al. Catheter ablation for atrial fibrillation in congestive heart failure. N Engl J Med. 2004;351(23):2373–83. https://doi.org/10.1056/NEJMoa041018.

    Article  CAS  PubMed  Google Scholar 

  286. Sohns C, Zintl K, Zhao Y, et al. Impact of left ventricular function and heart failure symptoms on outcomes post ablation of atrial fibrillation in heart failure: CASTLE-AF Trial. Circ Arrhythm Electrophysiol. 2020;13(10):e008461. https://doi.org/10.1161/circep.120.008461.

    Article  PubMed  Google Scholar 

  287. Lin WS, Tai Tai C, Hsieh MH, Tsai CF, Lin YK, Tsao HM, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation. 2003;107(25):3176–83.

    Article  Google Scholar 

  288. Di Biase L, Burkhardt JD, Mohanty P, Sanchez J, Mohanty S, Horton R, et al. Left atrial appendage An underecognizzed trigger site of atrial fibrillation. Circulation. 2010;10(122):109–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Lévy.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lévy, S., Steinbeck, G., Santini, L. et al. Management of atrial fibrillation: two decades of progress — a scientific statement from the European Cardiac Arrhythmia Society. J Interv Card Electrophysiol 65, 287–326 (2022). https://doi.org/10.1007/s10840-022-01195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01195-z

Keywords

Navigation