Skip to main content
Log in

Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Praseodymium-Cerium Oxide (PrxCe1-xO2−δ; PCO), a potential three way catalyst oxygen storage material and solid oxide fuel cell (SOFC) cathode, exhibits surprisingly high levels of oxygen nonstoichiometry, even under oxidizing (e.g. air) conditions, resulting in mixed ionic electronic conductivity (MIEC). In this study we examine the redox kinetics of dense PCO thin films using impedance spectroscopy, for x = 0.01, 0.10 and 0.20, over the temperature range of 550 to 670°C, and the oxygen partial pressure range of 10−4 to 1 atm O2. The electrode impedance was observed to be independent of electrode thickness and inversely proportional to electrode area, pointing to surface exchange rather than bulk diffusion limited kinetics. The large electrode capacitance (10−2F) was found to be consistent with an expected large electrochemically induced change in stoichiometry for x = 0.1 and x = 0.2 PCO. The PCO films showed surprisingly rapid oxygen exchange kinetics, comparable to other high performance SOFC cathode materials, from which values for the surface exchange coefficient, k q, were calculated. This study confirms the suitability of PCO as a model MIEC cathode material compatible with both zirconia and ceria based solid oxide electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Boaro, A. Trovarelli, J.H. Hwang, T.O. Mason, Solid State Ionics 147, 85 (2002)

    Article  CAS  Google Scholar 

  2. S. Bernal, G. Blanco, J.J. Calvino, J.M. Gatica, J.A.P. Omil, J.M. Pintado, Top. Catal. 28, 31 (2004)

    Article  CAS  Google Scholar 

  3. S. Haile, Mater. Today 6, 24 (2003)

    Article  CAS  Google Scholar 

  4. B.C.H. Steele, Solid State Ionics 129, 95 (2000)

    Article  CAS  Google Scholar 

  5. K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics 52, 165 (1992)

    Article  CAS  Google Scholar 

  6. S. Gupta, S.V.N.T. Kuchibhatla, M.H. Engelhard, V. Shutthanandan, P. Nachimuthu, W. Jiang, L.V. Saraf, S. Thevuthasan, S. Prasad, Sensor Actuator B Chem 139, 380 (2009)

    Article  Google Scholar 

  7. K.L. Duncan, Y. Wang, S.R. Bishop, F. Ebrahimi, E.D. Wachsman, J. Am. Ceram. Soc. 89, 3162 (2006)

    Article  CAS  Google Scholar 

  8. M. Boaro, C.D. Leitenburg, G. Dolcetti, A. Trovarelli, J. Catal. 193, 338 (2000)

    Article  CAS  Google Scholar 

  9. S.R. Bishop, T.S. Stefanik, H.L. Tuller, Phys. Chem. Chem. Phys: PCCP 13, 10165 (2011)

    CAS  Google Scholar 

  10. T.S. Stefanik, Electrical Properties and Defect Structure of Praseodymium-Cerium Oxide Solid Solutions, in Department of Materials Science and Engineering (Massachusetts Institute of Technology, Cambridge, 2004)

    Google Scholar 

  11. S.R. Bishop, D. Chen, Y. Kuru, J.J. Kim, T.S. Stefanik, H.L. Tuller, ECS Trans. 33, 51 (2011)

    Article  CAS  Google Scholar 

  12. S.R. Bishop, J.J. Kim, N. Thompson, D. Chen, Y. Kuru, T.S. Stefanik, H.L. Tuller, ECS Trans. 35, 1137 (2011)

    Article  CAS  Google Scholar 

  13. R. Chiba, T. Komatsu, H. Orui, H. Taguchi, K. Nozawa, H. Arai, ECS Trans. 26, 333 (2010)

    Article  CAS  Google Scholar 

  14. M.Y. Sinev, G.W. Graham, L.P. Haack, M. Shelef, J. Mater. Res. 11, 1960 (1996)

    Article  CAS  Google Scholar 

  15. W. Jung, H.L. Tuller, Solid State Ionics 180, 843 (2009)

    Article  CAS  Google Scholar 

  16. J. Fleig, F.S. Baumann, V. Brichzin, H.R. Kim, J. Jamnik, G. Cristiani, H.U. Habermeier, J. Maier, Fuel Cells 6, 284 (2006)

    Article  CAS  Google Scholar 

  17. G.J. la O’, B. Yildiz, S. McEuen, Y. Shao-Horn, J. Electrochem. Soc. 154, B427 (2007)

    Article  Google Scholar 

  18. K. Masato, Y. Masahiro, Bull. Chem. Soc. Jpn 72, 1427 (1999)

    Article  Google Scholar 

  19. H.L. Tuller, S.R. Bishop, Annu. Rev. Mater. Res. 41, 369 (2011)

    Article  CAS  Google Scholar 

  20. S.B. Adler, Chem. Rev. 104, 4791 (2004)

    Article  CAS  Google Scholar 

  21. J. Fleig, Solid State Ionics 150, 181 (2002)

    Article  CAS  Google Scholar 

  22. E.S. Thiele, L.S. Wang, T.O. Mason, S.A. Barnett, J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 9, 1991 (1991)

    Article  Google Scholar 

  23. P.S. Manning, J.D. Sirman, R.A. De Souza, J.A. Kilner, Solid State Ionics 100, 1 (1997)

    Article  CAS  Google Scholar 

  24. T. Petrovsky, H.U. Anderson, V. Petrovsky, Mater. Res. Soc. Symp. Proc. 756, EE4.7.1 (2003)

    Google Scholar 

  25. W. Jung, H.L. Tuller, J. Electrochem. Soc. 155, B1194 (2008)

    Article  CAS  Google Scholar 

  26. F.S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H.-U. Habermeier, J. Maier, J. Electrochem. Soc. 154, B931 (2007)

    Article  CAS  Google Scholar 

  27. F.S. Baumann, J. Fleig, H.-U. Habermeier, J. Maier, Solid State Ionics 177, 1071 (2006)

    Article  CAS  Google Scholar 

  28. W.C. Chueh, S.M. Haile, Phys. Chem. Chem. Phys: PCCP 11, 8144 (2009)

    CAS  Google Scholar 

  29. N. Imanishi, T. Matsumura, Y. Sumiya, K. Yoshimura, A. Hirano, Y. Takeda, D. Mori, R. Kanno, Solid State Ionics 174, 245 (2004)

    Article  CAS  Google Scholar 

  30. J. Maier, Physical Chemistry of Ionic Materials (Wiley, Chichester, 2004)

    Book  Google Scholar 

  31. B.C.H. Steele, Solid State Ionics 75, 157 (1995)

    Article  CAS  Google Scholar 

  32. R.A. De Souza, J.A. Kilner, Solid State Ionics 126, 153 (1999)

    Article  Google Scholar 

  33. W. Jung, A New Model Describing Cathode Kinetics in Solid Oxide Fuel Cell: Model Thin Film SrTi 1-x Fe x O 3-δ Mixed Conducting Oxides – a case study, in Department of Materials Science and Engineering (Massachusetts Institute of Technology, Cambridge, 2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Materials World Network in collaboration with Prof. Moos, Universität Bayreuth, Germany under grant No. DMR-0908627. The authors thank Dr. WooChul Jung, MIT (now at Caltech), for providing constructive discussions, Mr. Jae Jin Kim for preparation of the PLD targets and the Center of Materials Science and Engineering (NSF-MRSEC) at MIT for use of its facilities. SRB recognizes partial support from I2CNER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Bishop, S.R. & Tuller, H.L. Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. J Electroceram 28, 62–69 (2012). https://doi.org/10.1007/s10832-011-9678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-011-9678-z

Keywords

Navigation