Skip to main content
Log in

Pre-processing and transfer entropy measures in motor neurons controlling limb movements

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Directed information transfer measures are increasingly being employed in modeling neural system behavior due to their model-free approach, applicability to nonlinear and stochastic signals, and the potential to integrate repetitions of an experiment. Intracellular physiological recordings of graded synaptic potentials provide a number of additional challenges compared to spike signals due to non-stationary behaviour generated through extrinsic processes. We therefore propose a method to overcome this difficulty by using a preprocessing step based on Singular Spectrum Analysis (SSA) to remove nonlinear trends and discontinuities. We apply the method to intracellular recordings of synaptic responses of identified motor neurons evoked by stimulation of a proprioceptor that monitors limb position in leg of the desert locust. We then apply normalized delayed transfer entropy measures to neural responses evoked by displacements of the proprioceptor, the femoral chordotonal organ, that contains sensory neurones that monitor movements about the femoral-tibial joint. We then determine the consistency of responses within an individual recording of an identified motor neuron in a single animal, between repetitions of the same experiment in an identified motor neurons in the same animal and in repetitions of the same experiment from the same identified motor neuron in different animals. We found that delayed transfer entropy measures were consistent for a given identified neuron within and between animals and that they predict neural connectivity for the fast extensor tibiae motor neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The code used in the analysis is publicly available at https://github.com/lablps/JCNS2017. Further information may be obtained by contacting the authors.

References

  • Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., & Newland, P. L. (2012). The dynamics of analogue signaling in local networks controlling limb movement. European Journal of Neuroscience, 36(9), 3269–3282.

    Article  PubMed  Google Scholar 

  • Barnett, L., & Seth, A. K. (2011). Behaviour of Granger causality under filtering: theoretical invariance and practical application. Journal of Neuroscience Methods, 201(2), 404–419.

    Article  PubMed  Google Scholar 

  • Barnett, L., Barrett, A. B., & Seth, A. K. (2009). Granger causality and transfer entropy are equivalent for Gaussian variables. Physical Review Letters, 103(23), 238701.

    Article  PubMed  Google Scholar 

  • Bässler, U. (1993). The femur-tibia control system of stick insects—a model system for the study of the neural basis of joint control. Brain Research Reviews, 18(2), 207–226.

    Article  PubMed  Google Scholar 

  • Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25(9), 2312–2321.

    Article  CAS  PubMed  Google Scholar 

  • Burrows, M. (1987). Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 7(4), 1064–1080.

    CAS  PubMed  Google Scholar 

  • Burrows, M. (1988). Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ. Journal of Comparative Physiology A, 164(2), 207–217.

    Article  CAS  Google Scholar 

  • Burrows, M. (1996). The Neurobiology of an Insect Brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Buschmann, T., Ewald, A., von Twickel, A., & Büschges, A. (2015). Controlling legs for locomotion—Insights from robotics and neurobiology. Bioinspiration & Biomimetics, 10(4), 041001.

    Article  Google Scholar 

  • Cook, D. L., Schwindt, P. C., Grande, L. A., & Spain, W. J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66–70.

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst, O. P., Angarita-Jaimes, N., Simpson, D. M., Allen, R., & Newland, P. L. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1), 39–58.

    Article  PubMed  Google Scholar 

  • Dolan, K. T., & Spano, M. L. (2001). Surrogate for nonlinear time series analysis. Physical Review E, 64(4), 046128.

    Article  CAS  Google Scholar 

  • Ebeling, W. (2002). Entropies and predictability of nonlinear processes and time series. In International Conference on Computational Science (pp. 1209–1217). Berlin Heidelberg: Springer.

    Google Scholar 

  • Endo, W., Santos, F. P., Simpson, D., Maciel, C. D., & Newland, P. L. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience, 38(2), 427–438.

    Article  PubMed  Google Scholar 

  • Faes, L., & Porta, A. (2014). Conditional entropy-based evaluation of information dynamics in physiological systems. In Directed information measures in neuroscience (pp. 61–86). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Field, L. H., & Burrows, M. (1982). Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. Journal of Experimental Biology, 101(1), 265–285.

    Google Scholar 

  • Florin, E., Gross, J., Pfeifer, J., Fink, G. R., & Timmermann, L. (2010). The effect of filtering on Granger causality based multivariate causality measures. NeuroImage, 50(2), 577–588.

    Article  PubMed  Google Scholar 

  • Gamble, E. R., & DiCaprio, R. A. (2003). Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents. Journal of Neurophysiology, 89(4), 1815–1825.

    Article  PubMed  Google Scholar 

  • Golyandina, N., & Zhigljavsky, A. (2013). Singular Spectrum Analysis for time series. Berlin Heidelberg: Springer-Verlag. http://www.springer.com/br/book/9783642349126.

  • Gourevitch, B., & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.

    Article  PubMed  Google Scholar 

  • Grazzini, J. (2012). Analysis of the emergent properties: stationarity and ergodicity. Journal of Artificial Societies and Social Simulation, 15(2), 7.

    Article  Google Scholar 

  • Grzegorczyk, M., & Husmeier, D. (2009). Non-stationary continuous dynamic Bayesian networks. Advances in Neural Information Processing Systems, 682–690.

  • Hassani, H. (2007). Singular spectrum analysis: methodology and comparison. Journal of Data Science, 5(2), 239–257.

    Google Scholar 

  • Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1–46.

    Article  Google Scholar 

  • Ince, R. A., Mazzoni, A., Bartels, A., Logothetis, N. K., & Panzeri, S. (2012). A novel test to determine the signi cancer of neural selectivity to single and multiple potentially correlated stimulus features. Journal of Neuroscience Methods, 210(1), 49–65.

    Article  PubMed  Google Scholar 

  • Kaiser, A., & Schreiber, T. (2002). Information transfer in continuous processes. Physica D: Nonlinear Phenomena, 166(1), 43–62.

    Article  CAS  Google Scholar 

  • Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis. New York: Cambridge University Press. http://dl.acm.org/citation.cfm?id=289372.

  • Kittmann, R. (1997). Neural mechanisms of adaptive gain control in a joint control loop: muscle force and motoneuronal activity. Journal of Experimental Biology, 200(9), 1383–1402.

    CAS  PubMed  Google Scholar 

  • Knoblauch, A., & Sommer, F. T. (2016). Structural plasticity, effectual connectivity, and memory in cortex. Frontiers in Neuroanatomy, 10, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.

    CAS  PubMed  Google Scholar 

  • Kovač, M. (2014). The bioinspiration design paradigm: A perspective for soft robotics. Soft Robotics, 1(1), 28–37.

    Article  Google Scholar 

  • Lee, J., Nemati, S., Silva, I., Edwards, B. A., Butler, J. P., & Malhotra, A. (2012). Transfer entropy estimation and directional coupling change detection in biomedical time series. Biomedical Engineering Online, 11(1), 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meruelo, A. C., Simpson, D. M., Veres, S. M., & Newland, P. L. (2016). Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks, 75, 56–65.

    Article  Google Scholar 

  • Nawrot, M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains. In Analysis of parallel spike trains (pp. 37–58). Boston: Springer. https://link.springer.com/chapter/10.1007%2F978-1-4419-5675-0_3.

  • Newland, P. L. (1991). Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. Journal of Comparative Neurology, 312(4), 493–508.

    Article  CAS  PubMed  Google Scholar 

  • Newland, P. L., & Kondoh, Y. (1997a). Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Journal of Neurophysiology, 77(4), 1731–1746.

    CAS  PubMed  Google Scholar 

  • Newland, P. L., & Kondoh, Y. (1997b). Dynamics of neurons controlling movements of a locust hind leg III. Extensor tibiae motor neurons. Journal of Neurophysiology, 77(6), 3297–3310.

    CAS  PubMed  Google Scholar 

  • Orlandi, J. G., Stetter, O., Soriano, J., Geisel, T., & Battaglia, D. (2014). Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PloS One, 9(6), e98842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palus, M., & Novotná, D. (1998). Detecting modes with nontrivial dynamics embedded in colored noise: Enhanced Monte Carlo SSA and the case of climate oscillations. Physics Letters A, 248(2), 191–202.

    Article  CAS  Google Scholar 

  • Pampu, N. C., Vicente, R., Muresan, R. C., Priesemann, V., Siebenhuhner, F., & Wibral, M. (2013, July). Transfer entropy as a tool for reconstructing interaction delays in neural signals. In Signals, Circuits and Systems (ISSCS), 2013 International Symposium on (pp. 1–4). IEEE.

  • Prescott, S. A., & Sejnowski, T. J. (2008). Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. Journal of Neuroscience, 28(50), 13649–13661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3), 346–382.

    Article  Google Scholar 

  • Schroeder, K. E., Irwin, Z. T., Gaidica, M., Bentley, J. N., Patil, P. G., Mashour, G. A., & Chestek, C. A. (2016). Disruption of corticocortical information transfer during ketamine anesthesia in the primate brain. NeuroImage, 134, 459–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silchenko, A. N., Adamchic, I., Pawelczyk, N., Hauptmann, C., Maarouf, M., Sturm, V., & Tass, P. A. (2010). Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems. Journal of Neuroscience Methods, 191(1), 32–44.

    Article  PubMed  Google Scholar 

  • Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., & Jarvis, E. D. (2006). Computational inference of neural information flow networks. PLoS Computational Biology, 2(11), e161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Therrien, C. W. (1992). Discrete random signals and statistical signal processing. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1), 95–126.

    Article  Google Scholar 

  • Venema, V., Ament, F., & Simmer, C. (2006). A stochastic iterative amplitude adjusted fourier transform algorithm with improved accuracy. Nonlinear Processes in Geophysics, 13(3), 321–328.

    Article  Google Scholar 

  • Vidal-Gadea, A. G., Jing, X., Simpson, D., Dewhirst, O. P., Kondoh, Y., Allen, R., & Newland, P. L. (2010). Coding characteristics of spiking local interneurons during imposed limb movements in the locust. Journal of Neurophysiology, 103(2), 603–615.

    Article  CAS  PubMed  Google Scholar 

  • Vitanza, A., Patané, L., & Arena, P. (2015). Spiking neural controllers in multi-agent competitive systems for adaptive targeted motor learning. Journal of the Franklin Institute, 352(8), 3122–3143.

    Article  Google Scholar 

  • Watson, A. H., & Burrows, M. (1987). Immunocytochemical and pharmacological evidence for GABAergic spiking local interneurons in the locust. Journal of Neuroscience, 7(6), 1741–1751.

    CAS  PubMed  Google Scholar 

  • Wibral, M., Pampu, N., Priesemann, V., Siebenhühner, F., Seiwert, H., Lindner, M., & Vicente, R. (2013). Measuring information-transfer delays. PloS One, 8(2), e55809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wibral, M., Vicente, R., & Lindner, M. (2014). Transfer entropy in neuroscience. In Directed Information Measures in Neuroscience (pp. 3–36). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Wilmer, A., de Lussanet, M., & Lappe, M. (2012). Time-delayed mutual information of the phase as a measure of functional connectivity. PloS One, 7(9), e44633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., & Wibral, M. (2014). Efficient transfer entropy analysis of non-stationary neural time series. PloS One, 9(7), e102833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, C., Jeannès, R. L. B., Faucon, G., & Shu, H. (2013). Detecting information flow direction in multivariate linear and nonlinear models. Signal Processing, 93(1), 304–312.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Sao Paulo Research Foundations FAPESP (grant 2012/24272-7), CNPq (grant 475064/2013-5). PLN was supported by a PVE award from Science Without Borders (Brazil) and by a collaborative award from FAPEMIG-University of Southampton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando P. Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Simon R Schultz

Appendix A: Singular spectrum analysis

Appendix A: Singular spectrum analysis

The SSA algorithm is described as follows (Golyandina and Zhigljavsky 2013): consider a time-series Z T  = (z 1,  … , z T ). The embedding matrix of Z is obtained as:

$$ \boldsymbol{Z}={\left({z}_{ij}\right)}_{i,j=1}^{L,K}=\left(\begin{array}{ccccc}{z}_1& {z}_2& {z}_3& \dots & {z}_K\\ {}{z}_2& {z}_3& {z}_4& \dots & {z}_{K+1}\\ {}\vdots & \vdots & \vdots & \vdots & \vdots \\ {}{z}_L& {z}_{L+1}& {z}_{L+2}& \dots & {z}_T\end{array}\right)\kern3em $$
(5)

where K = T − L + 1 and L are window lengths considered for calculation (L ≤ T/2). It is also important to note that Z is a Hankel matrix and has equal elements on the anti-diagonals. A singular value decomposition (SVD) value is be applied to the matrix ZZ , representing it as a sum of rank-one bi-orthogonal elementary matrices. We then denote λ 1, λ 2, …  , λ L is as the eigenvalues of ZZ in decreasing order of magnitude λ 1 ≥  …  ≥ λ L  ≥ 0 and P = (P 1, P 2,  … , P L ) is the orthonormal system of the eigenvectors of ZZ corresponding to these eigenvalues (Golyandina and Zhigljavsky 2013). We also define d as d = max(i, such that λ i  > 0) = rank Z (in real data, we usually have d = min {L, K}).

The principal components (PCs) V i (i = 1 ,  …  , d) of the embedding matrix are then obtained by \( {V}_i={\boldsymbol{Z}}^{\prime }{P}_i/\sqrt{\lambda_i} \), and thus the trajectory matrix can be written as Z = Z 1 + Z 2 + Z 3 +  …  + Z d , where \( {\boldsymbol{Z}}_i=\sqrt{\lambda_i}{P}_i{V_i}^{\prime}\left(i=1,\dots, d\right) \). These matrices have rank 1, and therefore are called elementary matrices (Hassani 2007).

The signal, then, can be reconstructed by selecting PCs according to their desired properties and then projecting them back to the original coordinates of the time-series. This is done by selecting and partitioning the indices i = 1 ,  …  , d into disjoint subsets I 1 , I 2 ,  …  , I m . Then, for a given subset I = {i 1, i 2,  … , i Q } the corresponding resultant matrix Z I is defined as \( {\boldsymbol{Z}}_I={\boldsymbol{Z}}_{i_1}+{\boldsymbol{Z}}_{i_2}+\dots +{\boldsymbol{Z}}_{i_Q} \) . This also leads to the SVD decomposition being represented as \( \boldsymbol{Z}={\boldsymbol{Z}}_{I_1}+{\boldsymbol{Z}}_{I_2}+\dots +{\boldsymbol{Z}}_{I_m} \).

Diagonal averaging is then applied to a matrix \( {X}_{I_k} \) producing the reconstructed time-series \( {\overset{\sim }{\mathrm{Z}}}^{(k)}=\left({{\overset{\sim }{z}}_1}^{(k)},{{\overset{\sim }{z}}_2}^{(k)},\dots, {{\overset{\sim }{z}}_T}^{(k)}\right) \). In this way, the original series is decomposed into a sum of m reconstructed subseries:

$$ {z}_n=\sum \limits_{k=1}^m{\overset{\sim }{z}}_n^{(k)},\left(n=1,2,\dots, T\right)\kern2.75em $$
(6)

With this, SSA can be used as a tool for time-series smoothing, extraction of trends and extraction of oscillatory components (Golyandina and Zhigljavsky 2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F.P., Maciel, C.D. & Newland, P.L. Pre-processing and transfer entropy measures in motor neurons controlling limb movements. J Comput Neurosci 43, 159–171 (2017). https://doi.org/10.1007/s10827-017-0656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0656-6

Keywords

Navigation