Skip to main content
Log in

Characterization of AlGaN/GaN and AlGaN/AlN/GaN HEMTs in terms of mobility and subthreshold slope

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents two structures of wide band gap high electron mobility transistor (HEMT). One structure is made-up of a stack of AlGaN layer over GaN layer. This structure is characterized by two-dimensional (2-D) electron gas layer formed at the interface of the AlGaN and GaN layers. The 2-D electron gas plays an important role in determining the carrier-mobility \((\upmu )\) and hence drain-to-source current \((I_\mathrm{DS})\) of HEMT. The other structure introduces an AlN spacer layer between the AlGaN and GaN layers to improve these characteristics. This paper compares the output characteristics curves \((I_\mathrm{DS}-V_\mathrm{DS})\) and transconductance characteristics curves \((I_\mathrm{DS}-V_\mathrm{GS})\) obtained from simulations performed using Silvaco \(\hbox {ATLAS}^\mathrm{TM}\). The modified structure with spacer layer shows improvements in carrier-mobility and hence drain-to-source current. This paper estimates and compares the subthreshold slope (SS) of the two devices. AlGaN/AlN/GaN HEMT offers an SS of 80 mV/decade whereas AlGaN/GaN HEMT offers an SS of 95 mV/decade. Thus, an improvement in SS of about 18.75 % is achieved in AlGaN/AlN/GaN HEMT compared to AlGaN/GaN HEMT. HEMT with spacer layer also offers 10\(\times \) improvement in \(I_{DS}\) as compared to HEMT without spacer layer. The proposed HEMTs achieve \(\approx \)3.19\(\times \) improvement in breakdown voltage, \(>\)1.3\(\times \) improvement in SS compared to HEMTs previously proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Manel, C., Hafedh, B., Mohamed Ali, Z.: 2-D theoretical model for current-voltage characteristics. J. Mod. Phys. 3, 881–886 (2012)

    Article  Google Scholar 

  2. Puzyrev, Y., Mukherjee, S., et al.: Gate bias dependence of defect-mediated hot carrier degradation in GaN HEMTs. IEEE Trans. Electron Device 61(5), 1316–1320 (2014)

    Article  Google Scholar 

  3. Kikkawa, T.: GaN device for highly efficient power amplifiers. FUJITSU Sci. Tech. J. 48(1), 40–46 (2012)

    Google Scholar 

  4. Mishra, U.K., Parikh, P., Wu, Y.F.: AlGaN/GaN HEMTs: an overview of device operation and applications. Proc. IEEE 90(6), 1022–1031 (2002)

    Article  Google Scholar 

  5. Abdel, M.A., El-Abd, A.: Theoretical study of‘the charge control in AlGaN/GaN HEMTs. In: The 23rd National Radio Science Conference (NRSC 2006), pp. 1–7 (2006)

  6. Chung, J.W., Roberts, J.C., Piner, E.L., Palacios, T.: Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs. IEEE Electron Device Lett. 29(11), 1196–1198 (2008)

    Article  Google Scholar 

  7. Chung, J.W., Zhao, X., Palacios, T.: Estimation of trap density in AlGaN/GaN HEMTs from subthreshold slope study. In: 65th Annual device Research Conference, pp. 111–112 (2007)

  8. Then, H.W., et al.: IEDM Tech. Dig. 28.3.1 (2013) in AlGaN/GaN HEMT’s. J. Mod. Phys. 3, 881–886 (2012)

    Article  Google Scholar 

  9. Binari, S.C., et al.: Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90(6), 1048–1058 (2002)

    Article  Google Scholar 

  10. Sridharan, S., Venkatachalam, A., Yoder, P.D.: Electrothermal analysis of AlGaN/GaN high electron mobility transistors. J. Comput. Electron. 7(3), 236–239 (2008)

    Article  Google Scholar 

  11. Torres-Rios, E., Saavedra, C.: A new compact nonlinear model improvement methodology for GaN-HEMT. In: 2014 IEEE 5th Latin American Symposium on Circuits and Systems (LASCAS), pp. 1–4. IEEE, 2014

  12. Cabral, P.M., Pedro, J.C., Carvalho, N.B.: Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans. Microwav. Theory Tech. 52(11), 2585–2592 (2004)

    Article  Google Scholar 

  13. Silvaco, Version 5.15.32.R.: http://www.silvaco.com (2009)

  14. Mohiuddin, M. et al.: 2-D Physical Modelling of 6-doped GaAs/AlGaAs HEMT, In: ASDAM 2008, The Seventh International Conference on Advanced Semiconductor Devices and Microsystems, (2008), Smolenice Castle, Slovakia, pp. 207–210 (2008)

  15. Shen, L., et al.: AlGaN/AlN/GaN high power microwave HEMT. IEEE Electron Device 22(10), 457–459 (2001)

    Article  Google Scholar 

  16. Hao, Y., et al.: High performance gate recessed AlGaN/AlN/GaN MOS HEMT with 73 power-added efficiency. IEEE Electron Device 32(5), 626–628 (2011)

    Article  Google Scholar 

  17. Mohanbabu, A., et al.: Modeling of sheet carrier density and microwave frequency characteristics in Spacer based AlGaN/AlN/GaN HEMT devices. Solid-State Electron. 91, 44–52 (2014)

    Article  Google Scholar 

  18. Asgari, A., Kalafi, M., Faraone, L.: A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Physica E 28(4), 491–499 (2005)

    Article  Google Scholar 

  19. Ohi, K., Hashizume, T.: Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa channel alGaN/GaN HEMT. Jpn. J. Appl. Phys. 48, 081002 (2009)

    Article  Google Scholar 

  20. Tang, Y., et al.: High-performance monolithically integrated E/D mode InAlN/AlN/GaN HEMTs for mixed signal applications, In: IEEE International Electron Devices Meeting (IEDM), pp. 30.4.1–30.4.4 (2010)

  21. Smit, G.D., Scholten, A.J., Pijper, R.M., Tiemeijer, L.F., van der Toorn, R., Klaassen, D.B.: RF-Noise modeling in advanced CMOS technologies. IEEE Trans. Electron Device 61(2), 245–254 (2014)

    Article  Google Scholar 

  22. Shen, L., Heikman, S., Moran, B., Coffie, R., Zhang, N.-Q., Buttari, D., Smorchkova, I.P., Keller, S., DenBaars, S.P., Mishra, U.K.: AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett. 22(10), 457–459 (2001)

    Article  Google Scholar 

  23. Boudrissa, M., Delos, E., Gaquiere, C., Rousseau, M., Cordier, Y., Didier, T., Jaeger, J.C.: Enhancement-mode Al 0.66 In 0.34 As/Ga 0.67 In 0.33 As metamorphic HEMT, modeling and measurements. IEEE Trans. Electron Device 48(6), 1037–1044 (2001)

    Article  Google Scholar 

  24. Hsu, L., Walukiewicz, W.: Effect of polarization fields on transport properties in AlGaA/GaN heterostructures. J. Appl. Phys. 89, 1783–1789 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aminul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, S., Dwivedi, A.K. & Islam, A. Characterization of AlGaN/GaN and AlGaN/AlN/GaN HEMTs in terms of mobility and subthreshold slope. J Comput Electron 15, 172–180 (2016). https://doi.org/10.1007/s10825-015-0751-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0751-8

Keywords

Navigation