Skip to main content

Advertisement

Log in

Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The dengue virus (DENV) has four well-known serotypes, namely DENV1 to DENV4, which together cause 50–100 million infections worldwide each year. DENV NS2B/NS3pro is a protease recognized as a valid target for DENV antiviral drug discovery. However, NS2B/NS3pro conformational flexibility, involving in particular the NS2B region, is not yet completely understood and, hence, a big challenge for any virtual screening (VS) campaign. Molecular dynamics (MD) simulations were performed in this study to explore the DENV3 NS2B/NS3pro binding-site flexibility and obtain guidelines for further VS studies. MD simulations were done with and without the Bz-nKRR-H inhibitor, showing that the NS2B region stays close to the NS3pro core even in the ligand-free structure. Binding-site conformational states obtained from the simulations were clustered and further analysed using GRID/PCA, identifying four conformations of potential importance for VS studies. A virtual screening applied to a set of 31 peptide-based DENV NS2B/NS3pro inhibitors, taken from literature, illustrated that selective alternative pharmacophore models can be constructed based on conformations derived from MD simulations. For the first time, the NS2B/NS3pro binding-site flexibility was evaluated for all DENV serotypes using homology models followed by MD simulations. Interestingly, the number of NS2B/NS3pro conformational states differed depending on the serotype. Binding-site differences could be identified that may be crucial to subsequent VS studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

2D-RMSD:

Two-dimensional root-mean-square deviations

Bz-nKRR-H:

Benzoyl-norleucine-lysine-arginine-arginine-aldehyde

DENV:

Dengue virus

DENV1:

Dengue virus serotype 1

DENV2:

Dengue virus serotype 2

DENV3:

Dengue virus serotype 3

DENV4:

Dengue virus serotype 4

DHF:

Dengue haemorrhagic fever

DSS:

Dengue shock syndrome

H-bond:

Hydrogen bond

Ki :

Inhibition constant

MIFs:

Molecular interactions fields

MD:

Molecular dynamics

NMR:

Nuclear magnetic resonance

NS2B:

Non-structural protein 2B

NS3pro:

Protease domain of non-structural protein 3

PC:

Principal component

PCA:

Principal component analyses

PDB:

Protein data bank

RMSD:

Root-mean-square deviations

RMSF:

Root-mean-square fluctuations

VS:

Virtual screening

References

  1. Whitehorn J, Simmons CP (2011) The pathogenesis of dengue. Vaccine 29:7221–7228. doi:10.1016/j.vaccine.2011.07.022

    Article  CAS  Google Scholar 

  2. Tiew K-C, Dou D, Teramoto T et al (2012) Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives. Bioorg Med Chem 20:1213–1221. doi:10.1016/j.bmc.2011.12.047

    Article  CAS  Google Scholar 

  3. Normile D (2013) Surprising new dengue virus throws a spanner in disease control efforts. Science 342:415. doi:10.1126/science.342.6157.415

    Article  CAS  Google Scholar 

  4. Normile D (2014) Dengue vaccine trial poses public health quandary. Science 345:367–368. doi:10.1126/science.345.6195.367

    Article  CAS  Google Scholar 

  5. Flipse J, Smit JM (2015) The complexity of a dengue vaccine: a review of the human antibody response. PLoS Negl Trop Dis 9:e0003749. doi:10.1371/journal.pntd.0003749

    Article  Google Scholar 

  6. Nitsche C, Holloway S, Schirmeister T, Klein CD (2014) Biochemistry and medicinal chemistry of the dengue virus protease. Chem Rev 114:11348–11381. doi:10.1021/cr500233q

    Article  CAS  Google Scholar 

  7. De Clercq E (2002) Strategies in the design of antiviral drugs. Nat Rev Drug Discov 1:13–25. doi:10.1038/nrd703

    Article  Google Scholar 

  8. Tse MT (2013) All-oral HCV therapies near approval. Nat Rev Drug Discov 12:409–411. doi:10.1038/nrd4036

    Article  Google Scholar 

  9. Aleshin AE, Shiryaev SA, Strongin AY, Liddington RC (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806. doi:10.1110/ps.072753207

    Article  CAS  Google Scholar 

  10. Noble CG, Seh CC, Chao AT, Shi PY (2011) Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86:438–446. doi:10.1128/JVI.06225-11

    Article  Google Scholar 

  11. Leung D, Schroder K, White H et al (2001) Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276:45762–45771. doi:10.1074/jbc.M107360200

    Article  CAS  Google Scholar 

  12. Chandramouli S, Joseph JS, Daudenarde S et al (2010) Serotype-specific structural differences in the protease-cofactor complexes of the dengue virus family. J Virol 84:3059–3067. doi:10.1128/JVI.02044-09

    Article  CAS  Google Scholar 

  13. Erbel P, Schiering N, D’Arcy A et al (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373. doi:10.1038/nsmb1073

    Article  CAS  Google Scholar 

  14. Luo D, Xu T, Watson RP et al (2008) Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J 27:3209–3219. doi:10.1038/emboj.2008.232

    Article  CAS  Google Scholar 

  15. Luo D, Wei N, Doan DN et al (2010) Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol Chem 285:18817–18827. doi:10.1074/jbc.M109.090936

    CAS  Google Scholar 

  16. Yildiz M, Ghosh S, Bell JA et al (2013) Allosteric Inhibition of the NS2B-NS3 Protease from Dengue Virus. ACS Chem Biol 8:2744–2752. doi:10.1021/cb400612h

    Article  CAS  Google Scholar 

  17. De la Cruz L, Chen W-N, Graham B, Otting G (2014) Binding mode of the activity-modulating C-terminal segment of NS2B to NS3 in the dengue virus NS2B-NS3 protease. FEBS J 281:1517–1533. doi:10.1111/febs.12729

    Article  Google Scholar 

  18. Chen W-N, Loscha KV, Nitsche C et al (2014) The dengue virus NS2B–NS3 protease retains the closed conformation in the complex with BPTI. FEBS Lett 588:2206–2211. doi:10.1016/j.febslet.2014.05.018

    Article  CAS  Google Scholar 

  19. Kim YM, Gayen S, Kang C et al (2013) NMR analysis of a novel enzymatically active unlinked dengue NS2B–NS3 protease complex. J Biol Chem 288:12891–12900. doi:10.1074/jbc.M112.442723

    Article  CAS  Google Scholar 

  20. Iempridee T, Thongphung R, Angsuthanasombat C, Katzenmeier G (2008) A comparative biochemical analysis of the NS2B(H)-NS3pro protease complex from four dengue virus serotypes. Biochim Biophys Acta 1780:989–994. doi:10.1016/j.bbagen.2008.03.018

    Article  CAS  Google Scholar 

  21. Bodenreider C, Beer D, Keller TH et al (2009) A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Anal Biochem 395:195–204. doi:10.1016/j.ab.2009.08.013

    Article  CAS  Google Scholar 

  22. Cregar-Hernandez L, Jiao G-S, Johnson AT et al (2012) Small molecule pan-dengue and west Nile Virus NS3 protease inhibitors. Antivir Chem Chemother 21:209–218. doi:10.3851/IMP1767.Small

    Article  Google Scholar 

  23. Eswar N, Webb B, Marti-Renom MA et al (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps0209s50

    Google Scholar 

  24. Babine RE, Bender SL (1997) Molecular recognition of protein–ligand complexes: applications to drug design. Chem Rev 97:1359–1472

    Article  CAS  Google Scholar 

  25. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi:10.1093/nar/gkr1079

    Article  CAS  Google Scholar 

  26. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  28. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514. doi:10.1093/nar/gkp322

    Article  CAS  Google Scholar 

  29. Hoffmann F, Sotriffer C, Evers A et al (2007) Understanding oligomerization in 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: an in silico approach and evidence for an active protein. J Biotechnol 129:131–139. doi:10.1016/j.jbiotec.2006.11.024

    Article  CAS  Google Scholar 

  30. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 3:198–210. doi:10.1002/wcms.1121

    Article  CAS  Google Scholar 

  31. Srinivasan J, Trevathan MW, Beroza P, Case DA (1999) Application of a pairwise generalized Born model to proteins and nucleic acids: inclusion of salt effects. Theor Chem Acc 101:426–434. doi:10.1007/s002140050460

    Article  CAS  Google Scholar 

  32. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129. doi:10.1021/ja00172a038

    Article  CAS  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  34. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  35. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Multiconformational RESP methodology to biopolymers: charge Derivation for DNA, RNA, and Proteins. J Comput Chem 16:1357–1377. doi:10.1002/jcc.540161106

    Article  CAS  Google Scholar 

  36. Molecular Operating Environment (MOE) (2013) 2013.08. Montreal, Quebec, Canada, Computing Group, Inc

  37. Dupradeau F-Y, Pigache A, Zaffran T et al (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12:7821–7839. doi:10.1039/c0cp00111b

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB et al Gaussian 09 Revision A.02

  39. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. doi:10.1016/j.jmgm.2005.12.005

    Article  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  41. SYBYL-X (2013) version 2.1.1. St Louis, Tripos, L.P.

  42. R Core Team (2013) R: A Language and Environment for Statistical Computing

  43. Pastor M, Cruciani G (1995) A novel strategy for improving ligand selectivity in receptor-based drug design. J Med Chem 38:4637–4647

    Article  CAS  Google Scholar 

  44. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857. doi:10.1021/jm00145a002

    Article  CAS  Google Scholar 

  45. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084. doi:10.1021/jm100112j

    Article  CAS  Google Scholar 

  46. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169. doi:10.1021/ci049885e

    Article  CAS  Google Scholar 

  47. Scrödinger, LLC (2010) version 1.7.0. The PyMOL Molecular Graphics System

  48. Yin Z, Patel SJ, Wang W-L et al (2006) Peptide inhibitors of dengue virus NS3 protease. Part 2: SAR study of tetrapeptide aldehyde inhibitors. Bioorg Med Chem Lett 16:40–43. doi:10.1016/j.bmcl.2005.09.049

    Article  CAS  Google Scholar 

  49. Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S et al (2004) Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 78:13708–13716. doi:10.1128/JVI.78.24.13708-13716.2004

    Article  CAS  Google Scholar 

  50. Barlow DJ, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168:867–885

    Article  CAS  Google Scholar 

  51. Schaefer B, Kisker C, Sotriffer CA (2011) Molecular dynamics of Mycobacterium tuberculosis KasA: implications for inhibitor and substrate binding and consequences for drug design. J Comput Aided Mol Des 25:1053–1069. doi:10.1007/s10822-011-9483-4

    Article  CAS  Google Scholar 

  52. Merget B, Sotriffer CA (2015) Slow-onset inhibition of Mycobacterium tuberculosis InhA: revealing molecular determinants of residence time by MD simulations. PLoS ONE 10:e0127009. doi:10.1371/journal.pone.0127009

    Article  Google Scholar 

  53. Schmidt TC, Welker A, Rieger M et al (2014) Protocol for rational design of covalently interacting inhibitors. ChemPhysChem 15:3226–3235. doi:10.1002/cphc.201402542

    Article  CAS  Google Scholar 

  54. Cerutti DS, Freddolino PL, Duke RE, Case DA (2010) Simulations of a protein crystal with a high resolution X-ray structure: evaluation of force fields and water models. J Phys Chem B 114:12811–12824. doi:10.1021/jp105813j

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP), Brazil, and of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. A.T-do A. is member of the CEPID Redoxoma (No. 2013/07937-8) and of the NAP Redoxoma (PRPUSP). E.P. was recipient of PhD studentships from FAPESP (No. 2014/01614-5 and No.2012/06633-2). A.T-do A. was recipient of fellowship from CNPq (No. 305809/2012-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia T. do Amaral.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccirillo, E., Merget, B., Sotriffer, C.A. et al. Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence. J Comput Aided Mol Des 30, 251–270 (2016). https://doi.org/10.1007/s10822-016-9901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9901-8

Keywords

Navigation