Skip to main content
Log in

MLP Tools: a PyMOL plugin for using the molecular lipophilicity potential in computer-aided drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The molecular lipophilicity potential (MLP) is a well-established method to calculate and visualize lipophilicity on molecules. We are here introducing a new computational tool named MLP Tools, written in the programming language Python, and conceived as a free plugin for the popular open source molecular viewer PyMOL. The plugin is divided into several sub-programs which allow the visualization of the MLP on molecular surfaces, as well as in three-dimensional space in order to analyze lipophilic properties of binding pockets. The sub-program Log MLP also implements the virtual log P which allows the prediction of the octanol/water partition coefficients on multiple three-dimensional conformations of the same molecule. An implementation on the recently introduced MLP GOLD procedure, improving the GOLD docking performance in hydrophobic pockets, is also part of the plugin. In this article, all functions of the MLP Tools will be described through a few chosen examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Waring MJ (2010) Lipophilicity in drug discovery. Expert Opin Drug Discov 5:235–248

    Article  CAS  Google Scholar 

  2. Testa B, Carrupt PA, Gaillard P, Billois F, Weber P (1996) Lipophilicity in molecular modeling. Pharm Res 13:335–343

    Article  CAS  Google Scholar 

  3. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  4. Sangster J (1997) Octanol–water partition coefficients: fundamentals and physical chemistry. Wiley, Chichester

    Google Scholar 

  5. Giaginis C, Tsantili-Kakoulidou A (2008) Current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J Liq Chromatogr Relat Technol 31:79–96

    Article  CAS  Google Scholar 

  6. Naik P, Cucullo L (2012) In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci 101:1337–1354

    Article  CAS  Google Scholar 

  7. Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 98:861–893

    Article  CAS  Google Scholar 

  8. Tetko IV, Poda GI, Ostermann C, Mannhold R (2009) Accurate in silico log P predictions: one can’t embrace the unembraceable. QSAR Comb Sci 28:845–849

    Article  CAS  Google Scholar 

  9. Broto P, Moreau G, Vandycke C (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. System of atomic contributions for the calculation of the n-octanol/water coefficients. Eur J Med Chem 19:71–78

    CAS  Google Scholar 

  10. Ghose AK, Crippen GM (1986) Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure-activity relationships. 1. Partition coefficients as a measure of hydrophobicity. J Comput Chem 7:565–577

    Article  CAS  Google Scholar 

  11. Gaillard P, Carrupt PA, Testa B, Boudon A (1994) Molecular lipophilicity potential, a tool in 3D-QSAR. Method and applications. J Comput Aided Mol Des 8:83–96

    Article  CAS  Google Scholar 

  12. Gohier A, Espinosa JF, Jimenez-Barbero J, Carrupt PA, Pérez S, Imberty A (1996) Knowledge-based modeling of a legume lectin and docking of the carbohydrate ligand: the Ulex europaeus lectin 1 and its interaction with fucose. J Mol Graph 14:322–327

    Article  CAS  Google Scholar 

  13. Gaillard P, Carrupt PA, Testa B (1994) The conformational-dependent lipophilicity of morphine glucuronides as calculated from their molecular lipophilicity potential. Bioorg Med Chem Lett 4:737–742

    Article  CAS  Google Scholar 

  14. Ottaviani G, Martel S, Carrupt PA (2007) In silico and in vitro filters for the fast estimation of skin permeation and distribution of new chemical entities. J Med Chem 50:742–748

    Article  CAS  Google Scholar 

  15. Nurisso A, Bravo J, Carrupt PA, Daina A (2012) Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: impact on GOLD docking performance. J Chem Inf Model 52:1319–1327

    Article  CAS  Google Scholar 

  16. Carrupt PA, Gaillard P, Billois F, Weber P, Testa B et al (1996) The molecular lipophilicity potential (MLP): a new tool for log P calculations and docking, and in comparative molecular field analysis (CoMFA). In: Pliska V, Testa B, van de Waterbeemd H (eds) Lipophilicity in drug action and toxicology. VCH Publishers, Weinheim, pp 195–217

    Chapter  Google Scholar 

  17. Novaroli L, Daina A, Favre E, Bravo J, Carotti A, Leonetti F, Catto M, Carrupt PA, Reist M (2006) Impact of species-dependent differences on screening, design, and development of MAO B inhibitors. J Med Chem 49:6264–6272

    Article  CAS  Google Scholar 

  18. SYBYL-X 2.0, Tripos Inc., St. Louis, Missouri

  19. Ooms F, Wouters J, Collin S, Durant F, Jegham S, George P (1998) Molecular lipophilicity potential by clip, a reliable tool for the description of the 3D distribution of lipophilicity: application to 3-phenyloxazolidin-2-one, a prototype series of reversible MAO-A inhibitors. Bioorg Med Chem 8:1425–1430

    Article  CAS  Google Scholar 

  20. Molecular Operating Environment (MOE). version 2011.10, Chemical Computing Group Inc., Montreal, Quebec, Canada

  21. Pedretti A, Villa L, Vistoli G (2004) VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput-Aided Mol Des 18:167–173

    Article  CAS  Google Scholar 

  22. Hellmann D (2011) Python, version Addison-Wesley Professional

  23. De Lano WL (2002) The PyMOL molecular graphics system, version 1.5.0.4. Schrodinger Inc, New York, USA

  24. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Genet 52:609–623

    Article  CAS  Google Scholar 

  25. Oliphant TE (2006) Guide to NumPy. Brigham Young University, Provo

    Google Scholar 

  26. Shrake A, Rupley JA (1973) Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 79:351–371

    Article  CAS  Google Scholar 

  27. GOLD version 4.0, Online Documentation (http://www.ccdc.co.uk), Cambridge UK, Cambridge Crystallographic Data Center

  28. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  Google Scholar 

  29. Brunner-Guenat M, Carrupt PA, Lisa G, Testa B, Rose S, Thomas K, Jenner P, Ventura P (1995) Esters of l-Dopa: structure-hydrolysis relationships and ability to induce circling behaviour in an experimental model of hemiparkinsonism. J Pharm Pharmacol 47:861–869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Antoine Daina for helpful preliminary discussion and the Excellence scholarship of the University of Geneva, Switzerland, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Nurisso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberhauser, N., Nurisso, A. & Carrupt, PA. MLP Tools: a PyMOL plugin for using the molecular lipophilicity potential in computer-aided drug design. J Comput Aided Mol Des 28, 587–596 (2014). https://doi.org/10.1007/s10822-014-9744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9744-0

Keywords

Navigation