Skip to main content
Log in

Role of WNT signaling in epididymal sperm maturation

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Spermatozoa maturation, a process required for spermatozoa to acquire progressive motility and the ability to fertilize ova, primarily occurs in the caput and corpus of the epididymis. Despite considerable efforts, the factor(s) promoting epididymal sperm maturation remains unclear. Recently, WNT signaling has been implicated in epididymal sperm maturation.

Methods

To further investigate WNT signaling function in epididymal sperm maturation, we generated Wntless conditional knockout mice (Wls cKO), Wls flox/flox ; Lcn5-Cre.

Results

In these mice, WNTLESS (WLS), a conserved membrane protein required for all WNT protein secretion, was specifically disrupted in the principal cells of the caput epididymidis. Immunoblot analysis showed that WLS was significantly reduced in the caput epididymidis of Wls cKO mice. In the caput epididymidis of Wls cKO mice, WNT 10A and WNT 2b, which are typically secreted by the principal cells of the caput epididymis, were not secreted. Interestingly, sperm motility analysis showed that the WLS deficiency in the caput epididymidis had no effect on sperm motility. Moreover, fertility tests showed that Wls cKO male mice had normal fertility.

Conclusion

These results indicate that the disruption of WLS in principal cells of the caput epididymidis inhibits WNT protein secretion but has no effect on sperm motility and male fertility, suggesting that WNT signaling in the caput epididymidis may be dispensable for epididymal sperm maturation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15:213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sipilä P, Jalkanen J, Huhtaniemi I, Poutanen M. Novel epididymal proteins as targets for the development of posttesticular male contraception. Reproduction. 2009;137:379–89.

    Article  PubMed  Google Scholar 

  3. Turner TT. De Graaf’s thread: the human epididymis. J Androl. 2008;29:237–50.

    Article  PubMed  Google Scholar 

  4. Sullivan R, Saez F, Girouard J, Frenette G. Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cell Mol Dis. 2005;35:1–10.

    Article  CAS  Google Scholar 

  5. Cooper T. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil Suppl. 1997;53:119–36.

    Google Scholar 

  6. Hermo L, Oka R, Morales CR. Secretion and endocytosis in the male reproductive tract: a role in sperm maturation. Int Rev Cytol. 1994;154:105–89.

    Article  CAS  Google Scholar 

  7. Dacheux J-L, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147:R27–42.

    Article  CAS  PubMed  Google Scholar 

  8. Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell. 2015;163:1225–36.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J-S, Liu Q, Li Y-M, Hall SH, French FS, Zhang Y-L. Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray. Mol Cell Endocrinol. 2006;250:169–77.

    Article  CAS  PubMed  Google Scholar 

  10. Dubé E, Chan PT, Hermo L, Cyr DG. Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis 1. Biol Reprod. 2007;76:1034–44.

    Article  PubMed  Google Scholar 

  11. Thimon V, Koukoui O, Calvo E, Sullivan R. Region-specific gene expression profiling along the human epididymis. Mol Hum Reprod. 2007;13:691–704.

    Article  CAS  PubMed  Google Scholar 

  12. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  13. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  14. Chen SR, Tang J, Cheng J, Hao X, Wang Y, Wang X, et al. Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models. Cell Death Dis. 2016;7:e2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boyer A, Yeh JR, Zhang X, Paquet M, Gaudin A, Nagano MC, et al. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4. PLoS One. 2012;7:e29764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takase HM, Nusse R. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc Natl Acad Sci. 2016;113:E1489–E97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bernard P, Harley VR. Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol. 2007;39:31–43.

    Article  CAS  PubMed  Google Scholar 

  18. Yeh JR, Zhang X, Nagano MC. Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells. J Cell Sci. 2011;124:2357–66.

    Article  CAS  PubMed  Google Scholar 

  19. Jeays-Ward K, Dandonneau M, Swain A. Wnt4 is required for proper male as well as female sexual development. Dev Biol. 2004;276:431–40.

    Article  CAS  PubMed  Google Scholar 

  20. Wang K, Li N, Yeung C-H, Cooper TG, Liu X-X, Liu J, et al. Comparison of gene expression of the oncogenic Wnt/β-catenin signaling pathway components in the mouse and human epididymis. Asian J Androl. 2015;17:1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deshpande SN, Vijayakumar G, Rao AJ. Oestrogenic regulation and differential expression of WNT4 in the bonnet monkey and rodent epididymis. Reprod BioMed Online. 2009;18:555–61.

    Article  CAS  PubMed  Google Scholar 

  22. Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125:509–22.

    Article  PubMed  Google Scholar 

  23. Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 2006;125:523–33.

    Article  CAS  PubMed  Google Scholar 

  24. Fu J, Jiang M, Mirando AJ, Yu H-MI, Hsu W. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation. Proc Natl Acad Sci. 2009;106:18598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coombs GS, Yu J, Canning CA, Veltri CA, Covey TM, Cheong JK, et al. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J Cell Sci. 2010;123:3357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Das S, Yu S, Sakamori R, Stypulkowski E, Gao N. Wntless in Wnt secretion: molecular, cellular and genetic aspects. Front Biol. 2012;7:587.

    Article  CAS  PubMed Central  Google Scholar 

  27. Fu J, Ivy Yu HM, Maruyama T, Mirando AJ, Hsu W. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development. Dev Dyn. 2011;240:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie S, Xu J, Ma W, Liu Q, Han J, Yao G, et al. Lcn5 promoter directs the region-specific expression of cre recombinase in caput epididymidis of transgenic mice. Biol Reprod. 2013;88:71.

    Article  PubMed  Google Scholar 

  29. Jimenez T, Sánchez G, Wertheimer E, Blanco G. Activity of the Na, K-ATPase α4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction. 2010;139:835–45.

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Song Z, Wang L, Yu H, Liu W, Shang Y, et al. Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development. 2017;144:441–51.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng JM, Li J, Tang J-X, Chen S-R, Deng S-L, Jin C, et al. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice. Cell Cycle. 2016;15:2454–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dacheux JL, Castella S, Gatti JL, Dacheux F. Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology. 2005;63:319–41.

    Article  CAS  PubMed  Google Scholar 

  33. Xu J, Yao G, Ru Y, Xie S. Expression of tamoxifen-inducible CRE recombinase in Lcn5-CreERT2 transgenic mouse caput epididymis. Mol Reprod Dev. 2016;3:257–64.

    Google Scholar 

  34. Yu X, Suzuki K, Wang Y, Gupta A, Jin R, Orgebin-Crist MC, et al. The role of forkhead box A2 to restrict androgen-regulated gene expression of lipocalin 5 in the mouse epididymis. Mol Endocrinol. 2006;20:2418–31.

    Article  CAS  PubMed  Google Scholar 

  35. Zecca M, Basler K, Struhl G. Direct and long-range action of a wingless morphogen gradient. Cell. 1996;87:833–44.

    Article  CAS  PubMed  Google Scholar 

  36. Lawrence PA, Struhl G. Morphogens, compartments, and pattern: lessons from drosophila? Cell. 1996;85:951–61.

    Article  CAS  PubMed  Google Scholar 

  37. O'Hara L, Welsh M, Saunders PTK, Smith LB. Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology. 2011;152:718–29.

    Article  PubMed  Google Scholar 

  38. Björkgren I, Saastamoinen L, Krutskikh A, Huhtaniemi I, Poutanen M, Sipilä P. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One. 2012;7:e38457.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krutskikh A, Poliandri A, Cabrera-Sharp V, Dacheux JL, Poutanen M, Huhtaniemi I. Epididymal protein Rnase10 is required for post-testicular sperm maturation and male fertility. FASEB J. 2012;26:4198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Xing-Xu Huang and Yong-Lian Zhang for kindly providing the Lcn5-Cre transgenic mice.

Funding

This work was supported by grants from the Major Research Plan “973” Project (2012CB944702), the Natural Science Foundation of China (31501953, 31501161, 31471352, 31471400, 81270662, and 31171380), and the Academician Workstation Support (Shenyang, Changsha and Shandong).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xun Liu.

Ethics declarations

All animal experiments were performed in accordance with the protocols approved by the Institutional Animal Care and Use Committee at the Institute of Zoology (IOZ), Chinese Academy of Sciences (CAS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JM., Tang, JX., Li, J. et al. Role of WNT signaling in epididymal sperm maturation. J Assist Reprod Genet 35, 229–236 (2018). https://doi.org/10.1007/s10815-017-1066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1066-4

Keywords

Navigation