Skip to main content

Advertisement

Log in

Fluorescence Imaging for Ultrafiltration of Individual Nanoparticles from a Colloidal Solution in Track Membranes

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have used fluorescence nanoscopy for direct imaging of adsorption of individual colloidal quantum dots of diameter ~10 nm (spherical core/shell CdSeS/ZnS semiconductor nanocrystals, functionalized by organic oleic acid ligands) in nanopores of a nuclear filter (a polypropylene track membrane with pores of diameter ~500 nm). We have shown that when a colloidal toluene solution passes through the pores of the membrane, the nanoparticles are completely retained at a depth of 10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Orrit, Nature Photonics, 8, No. 12, 887–888 (2014).

    Article  ADS  Google Scholar 

  2. E. Betzig, Angew. Chem. Int. Ed., 54, No. 28, 8034–8053 (2015).

    Article  Google Scholar 

  3. S. W. Hell, Angew. Chem. Int. Ed., 54, No. 28, 8054–8066 (2015).

    Article  Google Scholar 

  4. W. E. Moerner, Angew. Chem. Int. Ed., 54, No. 28, 8067–8093 (2015).

    Article  Google Scholar 

  5. M. Orrit, G. Evans, T. Cordes, I. Kratochvilova, W. Moerner, L.-M. Needham, S. Sekatskii, Y. Vainer, S. Faez, V. Vedral, H. Prabal Goswami, A. Clark, A. J. Meixner, L. Piatkowski, V. Birkedal, V. Sandoghdar, G. M. Skinner, W. Langbein, J. Du, F. Koberling, J. Michaelis, F. Shi, R. Taylor, A. Chowdhury, B. Lounis, N. van Hulst, P. El-Khoury, L. Novotny, J. Wrachtrup, T. Farrow, A. Naumov, M. Gladush, and R. Hanson, Faraday. Discuss., 184, 275–303 (2015).

    Article  ADS  Google Scholar 

  6. A. M. van Oijen, J. Kohler, J. Schmidt, M. Muller, and G. J. Brakenhoff, Chem. Phys. Lett., 292, Nos. 1–2, 183–187 (1998).

    Article  ADS  Google Scholar 

  7. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, Nature Methods, 7, No. 5, 377–381 (2010).

    Article  Google Scholar 

  8. S. W. Hell, Science, 316, No. 5828, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  9. A. V. Naumov, Usp. Fiz. Nauk, 183, No. 6, 633–652 (2013). [A. V. Naumov, Phys. Uspekhi, 56, No. 6, 605–622 (2013). (English translation)] 10. A. V. Naumov, A. A. Gorshelev, Y. G. Vainer, L. Kador, and J. Kohler, Angew. Chem. Int. Ed., 48, No. 5, 9747–9750 (2009).

  10. I. Y. Eremchev, Y. G. Vainer, A. V. Naumov, and L. Kador, Phys. Chem. Chem. Phys., 13, No. 5, 1843–1848 (2011).

    Article  Google Scholar 

  11. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, Proc. Nat. Acad. Sci. USA, 106, No. 9, 2995–2999 (2009).

    Article  ADS  Google Scholar 

  12. A. V. Naumov, I. Y. Eremchev, and A. A. Gorshelev, Eur. Phys. J. D, 68, No. 11, 348 (2014).

    Article  ADS  Google Scholar 

  13. Y. Wang, G. Fruhwirth, E. Cai, T. Ng, and P. R. Selvin, Nano Lett., 13, No. 11, 5233–5241 (2013).

    Article  ADS  Google Scholar 

  14. I. S. Osad’ko, I. Y. Eremchev, and A. V. Naumov, J. Phys. Chem. C, 119, No. 39, 22646–22652 (2015).

    Article  Google Scholar 

  15. I. Y. Eremchev, I. S. Osad’ko, and A. V. Naumov, J. Phys. Chem. C, 120, No. 38, 22004–22011 (2016).

    Article  Google Scholar 

  16. D. S. Dovzhenko, I. L. Martynov, P. S. Samokhvalov, I. S. Eremin, G. E. Kotkovskii, I. P. Sipailo, and A. A. Chistyakov, in: D. L. Andrews, J. M. Nunzi, and A. Ostendorf (Eds.), Nanophotonics V, SPIE — Int. Soc. Opt. Eng., Bellingham; 91263o (2014).

  17. P. Yu. Apel and S. N. Dmitriev, Track membranes, in: A. B. Yaroslavtsev (Ed.), Membranes and Membrane Technologies, Nauchnyi Mir, Moscow (2013), p. 126.

  18. P. Apel, Radiat. Measur., 34, Nos. 1–6, 559–566 (2001).

    Article  ADS  Google Scholar 

  19. H. Lee, S. C. Chen, C. Kim, E. Westenburg, S. I. Moon, and D. Y. H. Pui, Separat. Purificat. Technol., 184, 34–42 (2017).

    Article  Google Scholar 

  20. H. Lee, D. Segets, S. Suss, W. Peukert, S. C. Chen, and D. Y. H. Pui, J. Membrane Sci., 524, 682–690 (2017).

    Article  Google Scholar 

  21. I. V. Korolkov, O. Guven, A. A. Mashentseva, A. B. Atici, Y. G. Gorin, M. V. Zdorovets, and A. A. Taltenov, Radiat. Phys. Chem., 130, 480–487 (2017).

    Article  ADS  Google Scholar 

  22. R. Kumar, Kamakshi, M. Kumar, and K. Awasthi, Int. J. Hydrogen Energy, 42, No. 22, 15203–15210 (2017).

    Article  Google Scholar 

  23. Kamakshi, R. Kumar, V. K. Saraswat, M. Kumar, and K. Awasthi, Int. J. Hydrogen Energy, 42, No. 25, 16186–16194 (2017).

    Article  Google Scholar 

  24. S. C. Chen, D. Segets, T. Y. Ling, W. Peukert, and D. Y. H. Pui, J. Membrane Sci., 497, 153–161 (2016).

    Article  Google Scholar 

  25. D. Pedone, M. Langecker, G. Abstreiter, and U. Rant, Nano Lett., 11, No. 4, 1561–1567 (2011).

    Article  ADS  Google Scholar 

  26. S. Pagliara, S. L. Dettmer, and U. F. Keyser, Phys. Rev. Lett., 113, No. 4 (2014).

  27. S. Pagliara, S. L. Dettmer, K. Misiunas, L. Lea, Y. Tan, and U. F. Keyser, Eur. Phys. J. Special Top., 223, No. 14, 3145–3163 (2014).

    Article  ADS  Google Scholar 

  28. S. L. Dettmer, S. Pagliara, K. Misiunas, and U. F. Keyser, Phys. Rev. E, 89, No. 6 (2014).

  29. S. L. Dettmer, U. F. Keyser, and S. Pagliara, Rev. Sci. Instrum., 85, No. 2 (2014).

    Google Scholar 

  30. C. R. Martin, Science, 266, No. 5193, 1961–1966 (1994).

    Article  ADS  Google Scholar 

  31. A. D. Davydov and V. M. Volgin, Élektrokhimiya, 52, No. 9, 905–933 (2016) [A. D. Davydov and V. M. Volgin, Russ. J. Electrochem., 52, No. 9, 806–831 (2016) (English translation)].

  32. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science, 313, No. 5793, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  33. B. Huang, W. Q. Wang, M. Bates, and X. W. Zhuang, Science, 319, No. 5864, 810–813 (2008).

    Article  ADS  Google Scholar 

  34. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, Nature Methods, 5, No. 6, 527–529 (2008).

    Article  Google Scholar 

  35. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, Proc. Nat. Acad. Sci. Am., 106, No. 9, 3125–3130 (2009).

    Article  ADS  Google Scholar 

  36. A. A. Baev, A. A. Rozhentsov, I. Yu. Eremchev, and A. V. Naumov, Izv. RAN Ser. Fiz. (2018), in press.

  37. O. V. Kristavchuk, I. V. Nikiforov, V. I. Kukushkin, A. N. Nechaev, and P. Yu. Apel, Kolloidn. Zh., 79, 596–605 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Naumova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 5, pp. 814–821, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulik, S.I., Eremchev, I.Y., Apel, P.Y. et al. Fluorescence Imaging for Ultrafiltration of Individual Nanoparticles from a Colloidal Solution in Track Membranes. J Appl Spectrosc 85, 916–922 (2018). https://doi.org/10.1007/s10812-018-0739-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0739-9

Keywords

Navigation