Skip to main content

Advertisement

Log in

Acetyl-CoA-derived biofuel and biochemical production in cyanobacteria: a mini review

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria, as photosynthetic bacteria, can generate energy and carbon sources directly from sunlight and atmospheric carbon dioxide. With the aid of genetic engineering, heterologous enzymes and/or pathways have been introduced into cyanobacteria, enabling the production of various biofuels and biochemicals. By utilizing cyanobacteria as production hosts, biofuels and biochemicals can be produced directly from carbon dioxide, and ultimately carbon dioxide fixation by cyanobacteria can help reduce atmospheric carbon dioxide concentration, alleviating global warming and air pollution. In this review, we introduce various biofuels and biochemicals produced, particularly from acetyl-CoA by cyanobacteria, and summarize research strategies that have been made to improve their production. This review will provide comprehensive information and valuable insights into strategies for enhancing cyanobacterial biofuels/chemicals production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110:3191–3196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, Uhlén M, Hudson EP (2015) Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microb Cell Factories 14:167

    Google Scholar 

  • Arisaka S, Terahara N, Oikawa A, Osanai T (2019) Increased polyhydroxybutyrate levels by ntcA overexpression in Synechocystis sp. PCC 6803. Algal Res 41:101565

    Google Scholar 

  • Asplund-Samuelsson J, Janasch M, Hudson EP (2018) Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential. Metab Eng 45:223–236

    CAS  PubMed  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    CAS  PubMed  Google Scholar 

  • Bao L, Li J-J, Jia C, Li M, Lu X (2016) Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnol Biofuels 9:185

    PubMed  PubMed Central  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. Freeman, New York

    Google Scholar 

  • Buer BC, Paul B, Das D, Stuckey JA, Marsh EN (2014) Insights into substrate and metal binding from the crystal structure of cyanobacterial aldehyde deformylating oxygenase with substrate bound. ACS Chem Biol 9:2584–2593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carpine R, Du W, Olivieri G, Pollio A, Hellingwerf KJ, Marzocchella A, dis Santos FB (2017) Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction. Algal Res 25:117–127

    Google Scholar 

  • Chwa JW, Kim WJ, Sim SJ, Um Y, Woo HM (2016) Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition. Plant Biotechnol J 14:1768–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140

    PubMed  PubMed Central  Google Scholar 

  • Dempo Y, Ohta E, Nakayama Y, Bamba T, Fukusaki E (2014) Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites 4:499–516

    PubMed  PubMed Central  Google Scholar 

  • Feng X, Lian J, Zhao H (2015) Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27:10–19

    CAS  PubMed  Google Scholar 

  • Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS (1983) Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45:1160–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagemann M, Hess WR (2018) Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotechnol 49:94–99

    CAS  PubMed  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauf W, Schlebusch M, Hüge J, Kopka J, Hagemann M, Forchhammer K (2013) Metabolic changes in Synechocystis PCC6803 upon nitrogen-starvation: excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3:101–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi Y, Yasugi F, Arai M (2015) Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One 10:e0122217

    PubMed  PubMed Central  Google Scholar 

  • Heo MJ, Jung HM, Um J, Lee SW, Oh MK (2017) Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli. ACS Synth Biol 6:182–189

    CAS  PubMed  Google Scholar 

  • Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119:585–590

    CAS  PubMed  Google Scholar 

  • Jia C, Li M, Li J, Zhang J, Zhang H, Cao P, Pan X, Lu X, Chang W (2014) Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases. Protein Cell 6:55–67

    PubMed  PubMed Central  Google Scholar 

  • Kaczmarzyk D, Cengic I, Yao L, Hudson EP (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 45:59–66

    CAS  PubMed  Google Scholar 

  • Khetkorn W, Incharoensakdi A, Lindblad P, Jantaro S (2016) Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresour Technol 214:761–768

    CAS  PubMed  Google Scholar 

  • Knoot CJ, Pakrasi HB (2019) Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002. Sci Rep 9

  • Knoot CJ, Ungerer J, Wangikar PP, Pakrasi HB (2018) Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem 293:5044–5052

    CAS  PubMed  Google Scholar 

  • Ku JT, Lan EI (2018) A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO2. Metab Eng 46:35–42

    CAS  PubMed  Google Scholar 

  • Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108

    CAS  PubMed  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363

    CAS  PubMed  Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109:6018–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan EI, Ro SY, Liao JC (2013) Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6:2672–2681

    CAS  Google Scholar 

  • Lan EI, Chuang DS, Shen CR, Lee AM, Ro SY, Liao JC (2015) Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Metab Eng 31:163–170

    CAS  PubMed  Google Scholar 

  • Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8:2180–2196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Lee KM, Chan HN, Steinbüchel A (1994) Comparison of recombinant Escherichia coli strains for synthesis and accumulation of poly-(3-hydroxybutyric acid) and morphological changes. Biotechnol Bioeng 44:1337–1347

    CAS  PubMed  Google Scholar 

  • Li N, Chang WC, Warui DM, Brooker SJ, Krebs C, Bollonger JM (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51:7908–7916

    CAS  PubMed  Google Scholar 

  • Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Food, Pharm Bioeng Div 2014 - Core Program Area 2014 AIChE Annu Meet. 2:750–760

  • Liu X, Fallon S, Sheng J, Curtiss R (2011a) CO2-limitation-inducible green recovery of fatty acids from cyanobacterial biomass. Proc Natl Acad Sci 108:6905–6908

    CAS  PubMed  Google Scholar 

  • Liu X, Sheng J, Curtiss R III (2011b) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci 108:6899–6904

    CAS  PubMed  Google Scholar 

  • Liu X, Miao R, Lindberg P, Lindblad P (2019) Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy Environ Sci 12:2765–2777

    Google Scholar 

  • Marella ER, Holkenbrink C, Siewers V, Borodina I (2018) Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol 50:39–46

    CAS  PubMed  Google Scholar 

  • McNeely K, Xu Y, Ananyev G, Bennette N, Bryant DA, Dismukes CG (2011) Synechococcus sp. strain PCC 7002 nifJ mutant lacking pyruvate:ferredoxin oxidoreductase. Appl Environ Microbiol 77:2435–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in α-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77:4264–4267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monshupanee T, Chairattanawat C, Incharoensakdi A (2019) Disruption of cyanobacterial γ-aminobutyric acid shunt pathway reduces metabolites levels in tricarboxylic acid cycle, but enhances pyruvate and poly(3-hydroxybutyrate) accumulation. Sci Rep 9:1–9

    CAS  Google Scholar 

  • Ni J, Zhang G, Qin L, Li J, Li C (2019) Simultaneously down-regulation of multiplex branch pathways using CRISPRi and fermentation optimization for enhancing β-amyrin production in Saccharomyces cerevisiae. Synth Syst Biotechnol 4:79–85

    PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Nakai K, Miyake M, Asada Y, Taya M (2001) Production of poly-β-hydroxybutyrate by thermophilic cyanobacterium, Synechococcus sp. MA19, under phosphate-limited conditions. Biotechnol Lett 23:1095–1099

    CAS  Google Scholar 

  • Noguchi S, Putri SP, Lan EI, Laviña WA, Dempo Y, Bamba T, Liao JC, Fukusaki E (2016) Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. Metabolomics 12:1–10

    CAS  Google Scholar 

  • Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7

    PubMed  PubMed Central  Google Scholar 

  • Osanai T, Numata K, Oikawa A, Kuwahara A, Iijima H, Doi Y, Tanaka K, Saito K, Hirai MY (2013) Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803. DNA Res 20:525–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osburn L, Brown RW, Werkman CH (1937) The butyl alcohol-isopropyl alcohol fermentation. J Biol Chem 121:685–695

    CAS  Google Scholar 

  • Pfleger BF, Gossing M, Nielsen J (2015) Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 29:1–11

    CAS  PubMed  Google Scholar 

  • Rodriguez S, Denby CM, Van Vu T, Baidoo EE, Wang G, Keasling JD (2016) ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microb Cell Factories 15:1–12

    Google Scholar 

  • Ruffing AM (2013a) Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria. J Appl Phycol 25:1495–1507

    CAS  Google Scholar 

  • Ruffing AM (2013b) RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium. Biotechnol Biofuels 6:113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruffing AM (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front Bioeng Biotechnol 2

  • Ruffing AM, Jones HDT (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

  • Schulz TC, Oelschlager M, Thompson ST, Vermaas WFJ, Nielsen DR, Lamb HH (2018) Catalytic conversion of cyanobacteria-derived fatty acids to alkanes for biorenewable synthetic paraffinic kerosene. Sustain Energy Fuels 2:882–893

    CAS  Google Scholar 

  • Sengupta A, Pakrasi HB, Wangikar PP (2018) Recent advances in synthetic biology of cyanobacteria. Appl Microbiol Biotechnol 102:5457–5471

    CAS  PubMed  Google Scholar 

  • Soma Y, Tsuruno K, Wada M, Yokata A, Hanai T (2014) Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng 23:175–184

    CAS  PubMed  Google Scholar 

  • Sudesh K, Taguchi K, Doi Y (2002) Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int J Biol Macromol 30:97–104

    CAS  PubMed  Google Scholar 

  • Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 13:169–176

    CAS  PubMed  Google Scholar 

  • Tang X, Feng H, Chen WN (2013) Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab Eng 16:95–102

    CAS  PubMed  Google Scholar 

  • Thiel K, Vuorio E, Aro EM, Kallio PT (2017) The effect of enhanced acetate influx on Synechocystis sp. PCC 6803 metabolism. Microb Cell Factories 16:1–12

    Google Scholar 

  • Wang B, Pugh S, Nielsen DR, Zhang W, Meldrum DR (2013a) Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metab Eng 16:68–77

    CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Lu X (2013b) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6

  • Wang Q, Huang X, Zhang J, Lu X, Li S, Li J-J (2014) Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes. Chem Commun 50:4299–4301

    CAS  Google Scholar 

  • Wang Y, Sun T, Gao X, Shi M, Wu L, Chen L, Zhang W (2016) Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 34:60–70

    PubMed  Google Scholar 

  • Wang Q, Bao L, Jia C, Li M, Li J-J, Lu X (2017) Identification of residues important for the activity of aldehyde-deformylating oxygenase through investigation into the structure-activity relationship. BMC Biotechnol 17:31

    PubMed  PubMed Central  Google Scholar 

  • Wang B, Xiong W, Yu J, Maness P-C, Meldrum DR (2018) Unlocking the photobiological conversion of CO2 to (R)-3-hydroxybutyrate in cyanobacteria. Green Chem 20:3772–3782

    CAS  Google Scholar 

  • Wu GF, Shen ZY, Wu QY (2002) Modification of carbon partitioning to enhance PHB production in Synechocystis sp. PCC6803. Enz Microb Technol 30:710–715

    CAS  Google Scholar 

  • Xiong W, Lee TC, Rommelfanger S, Gjersing E, Cano M, Maness P-C, Ghirardi M, Yu J (2016) Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Nat Plants 2:15187

    CAS  Google Scholar 

  • Yao L, Qi F, Tan X, Lu X (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7:94

    PubMed  PubMed Central  Google Scholar 

  • Yu H, Li X, Duchoud F, Chuang DS, Liao JC (2018) Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway. Nat Commun 9:2008

    PubMed  PubMed Central  Google Scholar 

  • Yunus IS, Jones PR (2018) Photosynthesis-dependent biosynthesis of medium chain-length fatty acids and alcohols. Metab Eng 49:59–68

    CAS  PubMed  Google Scholar 

  • Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553

  • Zhou J, Zhang H, Zhang Y, Li Y, Ma Y (2012) Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng 14:394–400

    CAS  PubMed  Google Scholar 

  • Zhu T, Scalvenzi T, Sassoon N, Lu X, Gugger M (2018) Terminal olefin profiles and phylogenetic analyses of olefin synthases of diverse cyanobacterial species. Appl Environ Microbiol 84:e00425–e00418

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for providing such valuable comments and leading us to an improvement of our work.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2019008680) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No.2018R1A6A3A11048291). This work was also supported by Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20194030202330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Moon Park.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YN., Lee, J.W., Kim, J.W. et al. Acetyl-CoA-derived biofuel and biochemical production in cyanobacteria: a mini review. J Appl Phycol 32, 1643–1653 (2020). https://doi.org/10.1007/s10811-020-02128-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02128-x

Keywords

Navigation