Skip to main content
Log in

Conserved and novel heat stress-responsive microRNAs identified by deep sequencing in Pyropia yezoensis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Pyropia yezoensis is commonly known as a valuable marine red alga. As a cold-temperate species, high temperature is a critical abiotic stress factor that can affect the growth and development of this seaweed. Exploring the regulatory mechanisms of P. yezoensis resistance to high temperatures has significance in breeding high temperature-resistant strains. To investigate the potential role of microRNA (miRNA) regulation in heat stress, we constructed and sequenced four libraries (one control and three heat stressed). A total of 1213 miRNAs, corresponding to 174 miRNA families and 10 miRNAs precursors producing 14 novel mature miRNAs were identified. Among them, 98 miRNAs were differentially expressed under heat stress. The quantitative PCR of six selected miRNAs verified the deep sequencing data. This study represents the first set of heat-responsive miRNAs from P. yezoensis, and provides valuable information for understanding the miRNA-mediated heat stress responses and resistance mechanisms in P. yezoensis. The results offer a foundation for future studies on the genetic improvement of Pyropia heat stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol 39:923–930

    Article  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. Biochem Mol Biol Plants 1158:e1203

    Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y (2012) Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene 504:160–165

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Hwang MS, Im S, Kim N, Jeong WJ, Park EJ, Gong YG, Choi DW (2013) Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions. J Appl Phycol 25:1237–1246

    Article  CAS  Google Scholar 

  • Cole K, Conway E (1975) Phenetic implications of structural features of the perennating phase in the life history of Porphyra and Bangia (Bangiophyceae, Rhodophyta). Phycologia 14:239–245

    Article  Google Scholar 

  • Eldem V, ÇA U, Ozhuner E, Bakır Y, Uranbey S, Unver T (2011) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 7(12):e50298

    Article  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

  • Fodor L, Leél-Össy S, Tari G (2008) Ex vivo antioxidation activity of polysaccharides from the red alga Porphyra yezoensis. Cienc Mar 34:253–261

    Article  Google Scholar 

  • Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124

    Article  CAS  PubMed  Google Scholar 

  • Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  • He L, Huang A, Shen S, Niu J, Wang G (2012) Comparative analysis of microRNAs between sporophyte and gametophyte of Porphyra yezoensis. Comp Funct Genomics 2012:912843–912843

    PubMed  PubMed Central  Google Scholar 

  • Hou HS, He WJ, Li HY, Tong SM (2008) Effects of high temperature stress on growth and physiology of conchocelis of Porphyra yezoensis. J Liaoning Normal University 31:487–490 (In Chinese)

    Google Scholar 

  • Jagadeeswaran G, Li YF, Sunkar R (2014) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J Cell Mol Biol 77:85–96

    Article  CAS  Google Scholar 

  • Jespersen D, Huang B (2015) Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics 15:798–812

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma M, Kaneko I, Coury DA, Suzuki T, Amano H (2006) Isolation and identification of gametogenesis-related genes in Porphyra yezoensis (Rhodophyta) using subtracted cDNA libraries. J Appl Phycol 18(3–5):263–270

    Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kendall AC, Wallsgrove RM, Hall NP, Turner JC, Lea PJ (1986) Carbon and nitrogen metabolism in barley ( Hordeum vulgare L.) mutants lacking ferredoxin-dependent glutamate synthase. Planta 168:316–323

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Kwon MJ, Nam TJ (2006) Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79:1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin

    Book  Google Scholar 

  • Lee MK, Kim IH, Choi YH, Nam TJ (2015) A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway. Eur Polym J 35:533–538

    CAS  Google Scholar 

  • Lembi C, Waaland J (eds) (1988) Algae and human affairs. Cambridge University Press, Cambridge

    Google Scholar 

  • Leung AKL, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Li H, Zhang YX, Liu JY (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Zhang X, Zou J, Xu D, Su F, Ye N (2010) Identification of miRNA from Porphyra yezoensis by high-throughput sequencing and bioinformatics analysis. PLoS One 5(5):e10698

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Wang W, Sun X, Liang Z, Wang F (2015) Conserved and novel heat stress-responsive microRNAs were identified by deep sequencing in Saccharina japonica (Laminariales, Phaeophyta). Plant Cell Environ 38:1357–1367

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

  • Llave C, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

  • Luo Q, Zhu Z, Zhu Z, Yang R, Qian F, Chen H, Yan X (2014) Different responses to heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis (Bangiales, Rhodophyta). PlosOne 9(4):e94354

    Article  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. Embo J 23:3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66:10843–10848

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8(3):e57122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5(2):255–258

    Article  Google Scholar 

  • Noda H, Horiguchi Y (1975) Studies on the flavor substances of “nori”, the dried laver Porphyra tenera. I Dimethyl sulfide and dimethyl-β-propiothetin Nihon-suisan-gakkai-shi 41(4):481–486

    Article  CAS  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Culture and collection of algae: proceedings of US-Japan conference in Hakone, Tokyo. Japanese Society of Plant Physiologists, pp 63–75

  • Rougvie AE (2005) Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development 132:3787–3798

    Article  CAS  PubMed  Google Scholar 

  • Saga N, Kitade Y (2002) Porphyra: a model plant in marine sciences. Fish Sci 68(Suppl 2):1075–1078

    Article  Google Scholar 

  • Sailaja B, Voleti SR, Subrahmanyam D, Sarla N, Prasanth VV, Bhadana VP, Mangrauthia SK (2014) Prediction and expression analysis of miRNAs associated with heat stress in Oryza sativa. Rice Sci 21:3–12

    Article  Google Scholar 

  • Shin ES, Hwang HJ, Kim IH, Nam TJ (2011) A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. Int J Mol Med 28:809–815(807)

    CAS  PubMed  Google Scholar 

  • Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi HG, Miyata M, Kikuchi N, Oliveira MC (2011) A new look at ancient order: generic of the Bangiales (Rhodophyta). J Phycol 47:1131–1151

    Article  PubMed  Google Scholar 

  • Tuteja N, Tarique M, Banu MSA, Ahmad M, Tuteja R (2014) Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Mol Biol 85:639–651

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Chekanova JA (2016) Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. Wiley Interdiscip Rev RNA 7:356–381

    Article  CAS  PubMed  Google Scholar 

  • Wang HZ, Yan XH, Lin LI (2012) Selection and characterization of a high-temperature resistant strain of Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Oceanol Limnol Sin 43:363–369

  • Wang L, Yu X, Wang H, YZ L, Ruiter MD, Prins M, He YK (2011) A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genomics 12(12):289

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu YQ, Vogel J, Jia J, Qi Y (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9:499–511

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Yu W, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) BMC Plant Biol 10:107–113

    Article  Google Scholar 

  • Xu X, Jiang Q, Ma X, Ying Q, Shen B, Qian Y, Song H, Wang H (2014) Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS One 9(11):e111679

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu X, Wang H, Lu Y, de Ruiter M, Cariaso M, Prins M, van Tunen A, He Y (2011) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav 9(4):e28700

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science & Technology Pillar Program (2013BAD23B01), the National Nature Science Foundation of China (41176153 and 31770393), the key R & D program of Shandong Province (2015GSF115008)  and the Science Fund for Distinguished Young Scholars of Shandong Province (JQ201509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naihao Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Figure S1

Predicted stem-loop structures of ten novel miRNAs precursors. Mature miRNAs were shown in red. (JPEG 537 kb)

High Resolution Image (TIFF 3037 kb)

Figure S2

The regulated tendency comparison of the heat stressed miRNA in three libraries. Each color of line represents one miRNA. (JPEG 33 kb)

High Resolution Image (TIFF 496 kb)

Table S1

The primers used for real-time PCR analysis of miRNA. (DOC 40 kb)

Table S2

Sequences, lengths, types and expression levels of all expressed miRNAs. (XLSX 377 kb)

Table S3

(XLSX 18 kb)

Table S4

Expression levels, fold changes and p-values of differentially expressed miRNA. (XLS 1486 kb)

Table S5

The regulated tendency comparison of the heat stressed miRNA in three libraries. (XLS 54.5 kb)

Table S6

KEGG analysis of the 976 transcripts that are predicted to be regulated by the differentially expressed miRNAs. (XLSX 21.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Zhang, X., Shi, L. et al. Conserved and novel heat stress-responsive microRNAs identified by deep sequencing in Pyropia yezoensis . J Appl Phycol 30, 685–696 (2018). https://doi.org/10.1007/s10811-017-1260-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1260-x

Keywords

Navigation