Skip to main content
Log in

Enumeration of bacteria from a Trichodesmium spp. bloom of the Eastern Arabian Sea: elucidation of their possible role in biogeochemistry

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The carbon-flux via algal bloom events involves bacteria as an important mediator. The present study, carried out during the spring inter-monsoon month of April 2008 onboard CRV Sagar Manjusha-06 in the Eastern Arabian Sea, addresses the bloom-specific flow of carbon to bacteria via chromophoric dissolved organic matter (CDOM). Eleven stations monitored were located in the coastal, shelf and open-ocean areas off Ratnagiri (16°59′N, 73°17′E), Goa (15°30′N, 73°48′E) and Bhatkal (13°58′N, 74°33′E) coasts. Visible bloom of “saw-dust” color in the Ratnagiri shelf were microscopically examined and the presence of cyanobacteria Trichodesmium erythraeum and T. thieabautii with cell concentrations as high as 3.05 × 106 trichomes L−1 was recorded. Total bacterial counts (TBC) varied between 94.09 × 108 cells L−1 in the bloom to 1.34 × 108 cells L−1 in the non-bloom area. Chromophoric dissolved organic matter (CDOM) concentrations averaged 2.27 ± 3.02 m−1 (absorption coefficient 325 nm) in the bloom to 0.28 ± 0.07 m−1 in the non-bloom waters respectively. CDOM composition varied from a higher molecular size with lower aromaticity in the bloom to lower molecular size and increased aromaticity in the non-bloom areas respectively. Strong positive relationship of TBC with Chlorophyll a (R 2 = 0.65, p < 0.01) and CDOM concentrations (R 2 = 0.8373, p = 0.01) in the bloom area indicated hydrolysis and/or uptake of CDOM by bacteria. Absorption by mycosporine-like amino acid palythene (λ max = 360 nm) was recorded in the filtrate of bloom. Morphotypes of Trichodesmium-associated bacteria revealed a higher frequency of Gram-positive rods. The role of bacteria in relation to changing CDOM nature and as a factor in affecting oxygen content of the water column is discussed in context of the Arabian Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355

    Article  PubMed  CAS  Google Scholar 

  • Azam F, Steward FG, Smith CD, Ducklow HW (1994) Significance of bacteria in carbon fluxes in the Arabian Sea. Proc Indian Acad Sci Earth Planet Sci 103:341–351

    CAS  Google Scholar 

  • Balch WM, Vaughn JM, Novotny JF, Drapeau DT, Goes JI, Lapierre JM, Scally E, Vining CL, Ashe A, Vaughn JMJ (2002) Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage. Limnol Oceanogr 47:1554–1561

    Article  CAS  Google Scholar 

  • Bracchini L, Tognazzi A, Dattilo AM, Decembrini F, Rossi C, Loiselle SA (2010) Sensitivity analysis of CDOM spectral slope in artificial and natural samples: an application in the central eastern Mediterranean Basin. Aquat Sci. doi:10.1007/s00027-010-0150-y

    Google Scholar 

  • Brophy JE, Carlson DJ (1989) Production of biologically refractory dissolved organic carbon by natural seawater microbial populations. Deep-Sea Res 36:497–507

    Article  CAS  Google Scholar 

  • Buck DJ (1982) Non-staining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    PubMed  CAS  Google Scholar 

  • Carder KL, Steward RG, Harvey GR, Ortner PB (1989) Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol Oceanogr 34:68–81

    Article  CAS  Google Scholar 

  • Capone DG, Zehr J, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium: a globally significant marine cyanobacterium. Science 276:1221–1229

    Article  CAS  Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:581–572

    Google Scholar 

  • Chin YP, Aiken G, O’Loughlin E (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 26:1853–1858

    Article  Google Scholar 

  • Chrost RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 29–59

    Google Scholar 

  • Devassy VP (1987) Trichodesmium red tides in the Arabian Sea. In: Rao TSS et al (eds) Contributions in marine sciences. Sastyabdapurti felicitation volume. National Institute of Oceanography, Dona Paula, pp 61–66

    Google Scholar 

  • Devassy VP, Bhattathiri PMA, Qasim SZ (1979) Succession of organisms following Trichodesmium phenomenon. Ind J Mar Sci 8:89–93

    Google Scholar 

  • Druffel ERM, Williams PM, Bauer JE, Ertel JR (1992) Cycling of dissolved and particulate organic matter in the open ocean. J Geophys Res 97:639–659

    Article  Google Scholar 

  • Ducklow WH, Smith DC, Campbell L, Landry MR, Quinby HL, Steward GF, Azam F (2001) Heterotrophic bacterioplankton in the Arabian Sea: basinwide response to year-round high primary productivity. Deep Sea Res II 48:1303–1323

    Article  Google Scholar 

  • Gerhardt P, Murray RGE, Costilow RW, Nester EW, Wood WA, Krieg NR, Phillips GB (1981) Manual of methods for general bacteriology. American Society of Microbiology, Washington DC, p 524

    Google Scholar 

  • Goes JI, Thoppil GP, HdoR G, Fasullo JT (2005) Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308:545–547

    Article  PubMed  CAS  Google Scholar 

  • Gomes HR, Goes JI, Matondkar SGP, Parab SG, Al-Azri ARN, Thoppil GP (2008) Blooms of Noctiluca miliaris in the Arabian Sea—an in situ and satellite study. Deep Sea Res I 55:751–765

    Article  Google Scholar 

  • Grashoff K, Kremling K, Ehrhard M (1999) Methods of seawater analysis. Wiley, Weinheim, p 419

    Book  Google Scholar 

  • Hagstrom A, Larsson U, Horstedt P, Normark S (1979) Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol 75:805–812

    Google Scholar 

  • Helms RJ, Stubbins A, Ritchie DJ, Minor CE, Kieber JD, Mopper K (2008) Absorbtion spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR et al (eds) Methods in microbiology, vol 5B. Academic, London, pp 264–275

    Google Scholar 

  • Hobbie JE, Daley RJ, Japer S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  • Knap A, Michaels A, Close A, Ducklow H, Dickson A (1996) Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. JGOFS Report No. 19, Scientific Committee on Oceanic Research, International Council of Scientific Unions. Intergovernmental Oceanographic Commission, UNESCO 1994, Bergen, Norway. 170 pp

  • Matondkar SGP, Parab SG, Desa E, Dwivedi RM (2006) Basin scale distribution of Trichodesmium spp. in the Arabian Sea using Oceansat I/OCM. In: Robert JF et al. (eds.) Remote sensing of the marine environment. Proc SPIE Vol. 6406 64060 V, doi:10.1117/12.693687

  • Miller WL, Moran MA (1997) Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr 42:1317–1324

    Article  CAS  Google Scholar 

  • Mopper K, Kieber DJ (2002) Photochemistry and the cycling of carbon, sulfur, nitrogen, and phosphorus. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 455–507

    Chapter  Google Scholar 

  • Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VVSS, D’Souza W, Joseph S, George MD (2000) Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408:334–346

    Article  Google Scholar 

  • Nelson NB, Carlson CA, Steinberg DK (2004) Production of chromophoric dissolved organic matter by Sargasso Sea microbes. Mar Chem 89:273–287

    Article  CAS  Google Scholar 

  • Nelson NB, Siegel DA (2002) Chromophoric DOM in the open ocean. In: Hansell D, Carlson C (eds) Biogeochemistry of marine dissolved organic matter. Academic, San Diego, pp 547–578

    Chapter  Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920

    Article  PubMed  CAS  Google Scholar 

  • Podogorska B, Mudryk JZ (2003) Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach. Estuar Coast Shelf Sci 56:539–546

    Article  Google Scholar 

  • Parab SG, Matondkar SGP, Gomes HR, Goes JI (2006) Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis. Continent Shelf Res 26:2358–2558

    Google Scholar 

  • Renaud F, Pringault O, Rochelle-Newall E (2005) Effects of the colonial cyanobacterium Trichodesmium spp. on bacterial activity. Aquat Microb Ecol 41:261–270

    Article  Google Scholar 

  • Romera-Castillo C, Sarmento H, Álvarez-Salgado XA, Gasol JM, Marrasé C (2010) Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol Oceanogr 55:446–454

    Article  CAS  Google Scholar 

  • Sellner KG (1992) Trophodynamics of marine cyanobacteria blooms. In: Carpenter EJ et al (eds) Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Kluwer, Dordrecht, pp 75–94

    Google Scholar 

  • Sheridan CC, Steinberg DK, Kling GW (2002) The microbial and metazoan community associated with colonies of Trichodesmium spp.: a quantitative survey. J Plankton Res 24:913–922

    Article  Google Scholar 

  • Subramaniam A, Carpenter EJ, Karentz D, Falkowski PG (1999) Optical properties of the marine diazotrophic cyanobacteria Trichodesmium; I—absorption and spectral photosynthetic characteristics. Limnol Oceanogr 44:618–627

    Article  CAS  Google Scholar 

  • Simeon J, Roesler C, Pegau WS, Dupouy C (2003) Sources of spatial variability in light absorbing components along an equatorial transect from 165°E to 150°W. J Geophys Res 108(C10):3333. doi:10.1029/2002JC001613

    Article  Google Scholar 

  • Summers RS, Cornel PK, Roberts PV (1987) Molecular size distribution and spectroscopic characterization of humic substances. Sci Total Environ 62:27–37

    Article  CAS  Google Scholar 

  • Steinberg KD, Nelson NB, Carlson AC, Prusak AC (2004) Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Mar Ecol Prog Ser 267:45–56

    Article  CAS  Google Scholar 

  • Zhang Y, Dijk VMA, Liu M, Zhu G, Qin B (2009) The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Wat Res 43:4685–4697

    Article  CAS  Google Scholar 

  • Zuo Y, Jones RD (1995) Formation of carbon monoxide by photolysis of dissolved marine organic material and its significance in the carbon cycling of the oceans. Naturwissenschaften 82:472–474

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr Satish R Shetye, Director, National Institute of Oceanography (CSIR-India), Goa for his encouragement, support in this work. Opportunity given to S Basu (PA-II) to participate in the cruise CRV Sagar Manjusha 06 is also acknowledged. This is NIO contribution number 4818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Furtado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Matondkar, S.G.P. & Furtado, I. Enumeration of bacteria from a Trichodesmium spp. bloom of the Eastern Arabian Sea: elucidation of their possible role in biogeochemistry. J Appl Phycol 23, 309–319 (2011). https://doi.org/10.1007/s10811-010-9589-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9589-4

Keywords

Navigation