Skip to main content

Advertisement

Log in

Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

As a potential source of biomass supplies, cassava (Manihot esculenta Crantz) has been studied for bioethanol production, but not for the production of biodiesel. In this study, we used cassava hydrolysate as an alternative carbon source for the growth of microalgae (Chlorella protothecoides) which accumulated oil in vivo, with high oil content up to 53% by dry mass under a 5-L scale fermentation condition. The oils were extracted and converted into biodiesel by transesterification. The biodiesel obtained consisted of mainly unsaturated fatty acids methyl ester (over 82%), cetane acid methyl ester, linoleic acid methyl ester, and oleic acid methyl ester. This work suggests the feasibility of an alternative choice for producing biodiesel from cassava by microalgae fermentation. We report herewith the optimized condition for the fermentation and for the hydrolysis of cassava as the carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (1994) Measurement of algal growth. Microalgae Biotechnology and Microbiology. Cambridge University Press, Cambridge, pp 56–62

    Google Scholar 

  • Bernardes OL, Bevilaqua JV, Leal MC, Freire DM, Langone MA (2007) Biodiesel fuel production by the transesterification reaction of soybean oil using immobilized lipase. Appl Biochem Biotechnol 137–140:105–114

    Article  PubMed  Google Scholar 

  • Cheng Y, Zhou WG, Gao CF, Kenneth L, Gao Y, Wu QY (2008) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781

    Article  Google Scholar 

  • Cheng Y, Lu Y, Gao CF, Wu QY (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23:4166–4173

    Article  CAS  Google Scholar 

  • Cock JH, Porto MCM, El-Sharkawy MA (1985) Water use efficiency of cassava. III. Influence of air humidity and water stress on gas exchange of field grown cassava. Crop Science 25:265–272

    Article  Google Scholar 

  • Fujio Y, Ogata M, Ueda S (1985) Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor. Biotechnol Bioeng 27:1270–1273

    Article  CAS  PubMed  Google Scholar 

  • Gao CF, Xiong W, Zhang YL, Yuan WQ, Wu QY (2008) Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. J Microbiol Methods 75:437–440

    Article  CAS  PubMed  Google Scholar 

  • Gao CF, Zhai Y, Ding Y, Wu QY (2009) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy. doi:10.1016/j.apenergy.2009.09.006

  • Koch BM, Sibbesen O, Swain E, Kahn RA, Liangchen D, Bak S et al (1994) Possible use of a biotechnological approach to optimize and regulate the content and distribution of cyanogenic glycosides in cassava to increase food safety. Acta Hortic 375:45–60

    CAS  Google Scholar 

  • Lenis JI, Calle F, Jaramillo G, Perez JC, Ceballos H, Cock JH (2006) Leaf retention and cassava productivity. Field Crops Res 95:126–134

    Article  Google Scholar 

  • Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  PubMed  Google Scholar 

  • Miao XL, Wu QY (2005) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Schäfer K (1998) Accelerated solvent extraction of lipids for determining the fatty acid composition of biological material. Anal Chim Acta 358:69–77

    Article  Google Scholar 

  • United Nations Food and Agriculture Organization (2008) Food lookout. Global Information and Early Warning System on Food and Agriculture. ftp://ftp.fao.org/docrep/fao/011/ai474e/ai474e00.pdf. Accessed 25 October 2009.

  • Vries CA, Ferweds JD, Flach M (1967) Choice of crops in relation to actual and potential production in tropics. Neth J Agric Sci 15:241–246

    Google Scholar 

  • Xiong W, Li X, Xiang J, Wu QY (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by the NSF Guangdong joint project U0633009, NSF project 30670476 and 30970224, the National High Technology Research & Development Program of China (863 Program) 2007AA05Z400, and MOST overseas cooperation project 20070574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Zhai, Y., Liu, M. et al. Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol 22, 573–578 (2010). https://doi.org/10.1007/s10811-009-9496-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9496-8

Keywords

Navigation