Skip to main content
Log in

Electrochemical analysis of parathion-ethyl using zirconium oxide–laponite nanocomposites-modified glassy carbon electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A simple, cost–effective electrode surface modified with a mixture of laponite clay and zirconium oxide (laponite–ZrO2) gel nanocomposites has been developed for the detection of parathion-ethyl pesticide. Different composition ratios of laponite–ZrO2 gel were used to modify the surface of glassy carbon (GC) electrode. The fabricated electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and attenuated total internal reflectance infrared spectroscopy. Cyclic voltammetry and differential pulse voltammetry were employed to investigate the modified laponite–ZrO2 electrode toward the electrochemical oxidation of several organophosphate compounds. The obtained results showed that the laponite–ZrO2 nanocomposites-modified GC electrodes have improved the sensitivity and selectivity of parathion-ethyl detection with a limit of detection as low as 1.6 ng mL−1 in the linear range of 0–58.3 ng mL−1 (R 2 = 0.994). Furthermore, the modified electrodes showed good stability at 71.6 ± 3.2 % after 14 days with the relative standard deviation of 4.36 % (n = 20).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muff J, Andersen CD, Erichsen R, Soegaard EG (2009) Electrochemical treatment of drainage water from toxic dump of pesticides and degradation products. Electrochim Acta 54(7):2062–2068. doi:10.1016/j.electacta.2008.09.032

    Article  CAS  Google Scholar 

  2. Lum KT, Huebner HJ, Li Y, Phillips TD, Raushel FM (2003) Organophosphate nerve agent toxicity in Hydra attenuata. Chem Res Toxicol 16(8):953–957. doi:10.1021/tx034047k

    Article  CAS  Google Scholar 

  3. Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and detection of chemical warfare agents. Chem Rev 111(9):5345–5403. doi:10.1021/cr100193y

    Article  CAS  Google Scholar 

  4. Kalakuntla RK, Wille T, Le Provost R, Letort S, Reiter G, Müller S, Thiermann H, Worek F, Gouhier G, Lafont O, Estour F (2013) New modified β-cyclodextrin derivatives as detoxifying agents of chemical warfare agents (I). Synthesis and preliminary screening: evaluation of the detoxification using a half-quantitative enzymatic assay. Toxicol Lett 216(2–3):200–205. doi:10.1016/j.toxlet.2012.11.020

    Article  CAS  Google Scholar 

  5. Russell AJ, Berberich JA, Drevon GF, Koepsel RR (2003) Biomaterials for mediation of chemical and biological warfare agents. Annu Rev Biomed Eng 5(1):1–27. doi:10.1146/annurev.bioeng.5.121202.125602

    Article  CAS  Google Scholar 

  6. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177. doi:10.1016/j.taap.2013.01.025

    Article  CAS  Google Scholar 

  7. . http://www.epa.gov/pesticides/carlist/

  8. Quinn DM (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem Rev 87(5):955–979. doi:10.1021/cr00081a005

    Article  CAS  Google Scholar 

  9. Huang G, Ouyang J, Baeyens WRG, Yang Y, Tao C (2002) High-performance liquid chromatographic assay of dichlorvos, isocarbophos and methyl parathion from plant leaves using chemiluminescence detection. Anal Chim Acta 474(1–2):21–29. doi:10.1016/S0003-2670(02)01014-0

    Article  CAS  Google Scholar 

  10. Nousiainen M, Peräkorpi K, Sillanpää M (2007) Determination of gas-phase produced ethyl parathion and toluene 2,4-diisocyanate by ion mobility spectrometry, gas chromatography and liquid chromatography. Talanta 72(3):984–990. doi:10.1016/j.talanta.2006.12.022

    Article  CAS  Google Scholar 

  11. Yang T-J, Lee M-R (2010) Electrically assisted solid-phase microextraction combined with liquid chromatography–mass spectrometry for determination of parathion in water. Talanta 82(2):766–770. doi:10.1016/j.talanta.2010.05.053

    Article  CAS  Google Scholar 

  12. Wang J, Chatrathi MP, Mulchandani A, Chen W (2001) Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Anal Chem 73(8):1804–1808. doi:10.1021/ac001424e

    Article  CAS  Google Scholar 

  13. Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, Han M-Y (2011) Shell thickness-dependent raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem 84(1):255–261. doi:10.1021/ac202452t

    Article  Google Scholar 

  14. Li H, Li J, Xu Q, Hu X (2011) Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem 83(24):9681–9686. doi:10.1021/ac202679g

    Article  CAS  Google Scholar 

  15. Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, Lu D, Feng J, Zhao J, Yang L, Yan X (2012) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312. doi:10.1021/ac302781r

    Article  Google Scholar 

  16. Wang M, Li Z (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sens Actuators B 133(2):607–612. doi:10.1016/j.snb.2008.03.023

    Article  CAS  Google Scholar 

  17. Liu J, Meng X, Hu Y, Geng D, Banis MN, Cai M, Li R, Sun X (2013) Controlled synthesis of zirconium oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon 52:74–82. doi:10.1016/j.carbon.2012.09.007

    Article  CAS  Google Scholar 

  18. Nguyen PKQ, Lunsford SK (2012) Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: Lead and cadmium. Talanta 101:110–121. doi:10.1016/j.talanta.2012.09.004

    Article  CAS  Google Scholar 

  19. Elzbieciak M, Wodka D, Zapotoczny S, Nowak P, Warszynski P (2009) Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles. Langmuir 26(1):277–283. doi:10.1021/la902077j

    Article  Google Scholar 

  20. Senillou A, Jaffrezic N, Martelet C, Cosnier S (1999) A laponite clay-poly(pyrrole–pyridinium) matrix for the fabrication of conductimetric microbiosensors. Anal Chim Acta 401(1–2):117–124. doi:10.1016/S0003-2670(99)00520-6

    Article  CAS  Google Scholar 

  21. Fatyeyeva K, Bigarré J, Blondel B, Galiano H, Gaud D, Lecardeur M, Poncin-Epaillard F (2011) Grafting of p-styrene sulfonate and 1,3-propane sultone onto Laponite for proton exchange membrane fuel cell application. J Membr Sci 366(1–2):33–42. doi:10.1016/j.memsci.2010.09.023

    Article  CAS  Google Scholar 

  22. Plackett D, Siu A, Li Q, Pan C, Jensen JO, Nielsen SF, Permyakova AA, Bjerrum NJ (2011) High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. J Membr Sci 383(1–2):78–87. doi:10.1016/j.memsci.2011.08.038

    Article  CAS  Google Scholar 

  23. Bui M-PN, Seo SS (2014) Inclusion complexes of paraoxon-ethyl and parathion-ethyl with β-cyclodextrin modified zirconium oxide thin film using ATR-FTIR spectroscopy (manuscript submitted)

  24. Idczak K, Mazur P, Zuber S, Markowski L, Skiścim M, Bilińska S (2014) Growth of thin zirconium and zirconium oxides films on the n-GaN(0001) surface studied by XPS and LEED. Appl Surf Sci. doi:10.1016/j.apsusc.2014.01.102

    Google Scholar 

  25. Liu G, Lin Y (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77(18):5894–5901. doi:10.1021/ac050791t

    Article  CAS  Google Scholar 

  26. Galeano-Diaz T, Guiberteau-Cabanillas A, Mora-Diez N, Parrilla-Vazquez P, Salinas-Lopez F (2000) Rapid and sensitive determination of 4-nitrophenol, 3-methyl-4-nitrophenol, 4,6-dinitro-o-cresol, parathion-methyl, fenitrothion, and parathion-ethyl by liquid chromatography with electrochemical detection. J Agric Food Chem 48(10):4508–4513. doi:10.1021/jf000118z

    Article  CAS  Google Scholar 

  27. Fang M, Kaschak DM, Sutorik AC, Mallouk TE (1997) A “mix and match” ionic—covalent strategy for self-assembly of inorganic multilayer films. J Am Chem Soc 119(50):12184–12191. doi:10.1021/ja972569e

    Article  CAS  Google Scholar 

  28. Hu C, He M, Chen B, Hu B (2013) A sol–gel polydimethylsiloxane/polythiophene coated stir bar sorptive extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in environmental water samples. J Chromatogr A 1275:25–31. doi:10.1016/j.chroma.2012.12.036

    Article  CAS  Google Scholar 

  29. Tan SN, Wang W, Ge L (2011) Biosensors based on sol–gel-derived materials. In: Ducheyne P (ed) Comprehensive biomaterials. Elsevier, Oxford, pp 471–489. doi:10.1016/B978-0-08-055294-1.00118-5

    Chapter  Google Scholar 

  30. Caracoche MC, Rivas PC, Cervera MM, Caruso R, Benavídez E, de Sanctis O, Escobar ME (2000) Zirconium oxide structure prepared by the sol-gel route: I, the role of the alcoholic solvent. J Am Ceram Soc 83(2):377–384. doi:10.1111/j.1151-2916.2000.tb01200.x

    Article  CAS  Google Scholar 

  31. Negrete-Herrera N, Putaux J-L, Bourgeat-Lami E (2006) Synthesis of polymer/laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged laponite clay platelets. Prog Solid State Chem 34(2–4):121–137. doi:10.1016/j.progsolidstchem.2005.11.040

    Article  CAS  Google Scholar 

  32. Gomez-Mingot M, Montiel V, Banks CE, Iniesta J (2014) Screen-printed graphite macroelectrodes for the direct electron transfer of cytochrome c: a deeper study of the effect of pH on the conformational states, immobilization and peroxidase activity. Analyst 139(6):1442–1448. doi:10.1039/c3an02137h

    Article  CAS  Google Scholar 

  33. Tapsoba I, Bourhis S, Feng T, Pontié M (2009) Sensitive and selective electrochemical analysis of methyl-parathion (MPT) and 4-nitrophenol (PNP) by a new type p-NiTSPc/p-PPD coated carbon fiber microelectrode (CFME). Electroanalysis 21(10):1167–1176. doi:10.1002/elan.200804529

    Article  CAS  Google Scholar 

  34. Liu G, Lin Y (2005) Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochem Commun 7(4):339–343. doi:10.1016/j.elecom.2005.02.002

    Article  CAS  Google Scholar 

  35. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45. doi:10.1016/j.aca.2012.05.029

    Article  CAS  Google Scholar 

  36. Tcheumi HL, Tonle IK, Ngameni E, Walcarius A (2010) Electrochemical analysis of methylparathion pesticide by a Gemini surfactant-intercalated clay-modified electrode. Talanta 81(3):972–979. doi:10.1016/j.talanta.2010.01.049

    Article  CAS  Google Scholar 

  37. Vlyssides A, Barampouti EM, Mai S, Arapoglou D, Kotronarou A (2004) Degradation of methylparathion in aqueous solution by electrochemical oxidation. Environ Sci Technol 38(22):6125–6131. doi:10.1021/es049726b

    Article  CAS  Google Scholar 

  38. Bui M-PN, Li CA, Han KN, Pham X-H, Seong GH (2012) Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles. Sens Actuators B. doi:10.1016/j.snb.2012.08.012

    Google Scholar 

  39. Wei Y, Yang R, Guo Z, Gao C, Wang L, Liu J-H, Huang X-J (2012) A new “capturer” for electrochemical detection of organophosphate pesticides: the hydroxylation and carbonylation carbonaceous nanospheres. Anal Methods 4(2):353–356. doi:10.1039/c2ay05730a

    Article  CAS  Google Scholar 

  40. Stoytcheva M, Zlatev R, Gochev V, Velkova Z, Montero G (2014) Amperometric biosensor precision improvement: application to organophosphorus pesticide determination. Anal Methods 6(20):8232–8238. doi:10.1039/c4ay01792g

    Article  CAS  Google Scholar 

  41. Xu C, Wu K, Hu S, Cui D (2002) Electrochemical detection of parathion at a glassy-carbon electrode modified with hexadecane. Anal Bioanal Chem 373(4–5):284–288. doi:10.1007/s00216-002-1325-8

    Article  CAS  Google Scholar 

  42. Liu X (2011) Electrochemical sensor for determination of parathion based on electropolymerization poly(safranine) film electrode. Int J Electrochem 2011:6. doi:10.4061/2011/986494

    Article  Google Scholar 

  43. Nancy Nirmala J, Kumaravel A, Chandrasekaran M (2010) Stearic acid modified glassy carbon electrode for electrochemical sensing of parathion and methyl parathion. J Appl Electrochem 40(8):1571–1574. doi:10.1007/s10800-010-0125-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Department of Defense, Grant No. W911NF-11-1-0181 at Albany State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong S. Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, MP.N., Seo, S.S. Electrochemical analysis of parathion-ethyl using zirconium oxide–laponite nanocomposites-modified glassy carbon electrode. J Appl Electrochem 45, 365–373 (2015). https://doi.org/10.1007/s10800-015-0789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0789-0

Keywords

Navigation