Skip to main content

Advertisement

Log in

Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  • Barbeau DJ, La KT, Kim KS, Kerpedjieva SS, Shurin GV, Tamama K (2014) Early Growth Response-2 signaling mediates immunomodulatory effects of human multipotential stromal cells. Stem Cells Dev 23(2):155–166

    Article  PubMed  CAS  Google Scholar 

  • Bernemann C, Hülsewig C, Ruckert C, Schäfer S, Blümel L, Hempel G, Götte M, Greve B, Barth PJ, Kiesel L, Liedtke C (2014) Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on WNT signaling. Mol Cancer 13:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Busse WW (1998) Leukotrienes and inflammation. Am J Respir Crit Care Med 157(6):5210–5213

    Article  Google Scholar 

  • Busse W, Kraft M (2005) Cysteinyl leukotrienes in allergic inflammation: strategic target for therapy. Chest 127(4):1312–1326

    PubMed  CAS  Google Scholar 

  • Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P (2010) Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Res 12(3):204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S-H, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC, Lane TF, Hla T (2004) Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 101(2):591–596

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B, Elkord E (2016) Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel) 4(3):28

    Article  CAS  Google Scholar 

  • Cheah MS, Ley TJ, Tronick SR, Robbins KC (1986) FGR proto-oncogene mRNA induced in B lymphocytes by Epstein–Barr virus infection. Nature 319(6050):238–240

    Article  PubMed  CAS  Google Scholar 

  • Chen S (1998) Aromatase and breast cancer. Front Biosci 3:d922–d933

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Gyamfi J, Jang H, Koo JS (2018) The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol 33:133–145

    PubMed  Google Scholar 

  • Chumsri S, Timothy Howes T, Bao T, Sabnis G, Brodie A (2011) Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 125(1–2):13–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clària J (2003) Cyclooxygenase-2 biology. Curr Pharm Des 9:2177–2190

    Article  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doherty GM, Boucher L, Sorenson K, Lowney J (2001) Interferon regulatory factor expression in human breast cancer. Ann Surg 233(5):623–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, Lin SM (2010) Comparison of beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform 11:587

    Article  CAS  Google Scholar 

  • Eifert C, Wang X, Kokabee L, Kourtidis A, Jain R, Gerdes MJ, Conklin DS (2013) A novel isoform of the B cell tyrosine kinase BTK protects breast cancer cells from apoptosis. Genes Chromosom Cancer 52(10):961–975

    Article  PubMed  CAS  Google Scholar 

  • Elsberger B, Fullerton R, Zino S, Jordan F, Mitchell TJ, Brunton VG, Mallon EA, Shiels PG, Edwards J (2010) Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression. Br J Cancer 103:899–909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344(6186):921–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley R, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65(12):5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11(7):802–807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hallett RM, Dvorkin-Gheva A, Bane A, Hassell JA (2012) A gene signature for predicting outcome in patients with basal-like breast cancer. Sci Rep 2:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris RE (2007) Cyclooxygenase-2 (COX-2) and the inflammogenesis of cancer. Subcell Biochem 42:93–126

    Article  PubMed  Google Scholar 

  • Harris RE, Robertson FM, Abou-Issa HM, Farrar WB, Brueggemeier R (1999) Genetic induction and upregulation of cyclooxygenase (COX) and aromatase (CYP19): an extension of the dietary fat hypothesis of breast cancer. Med Hypotheses 52(4):291–292

    Article  PubMed  CAS  Google Scholar 

  • Harris RE, Harris ZM, Casto BC (2014) Cyclooxygenase-2 (COX-2) and the inflammogenesis of breast cancer. World J Clin Oncol 5(4):677–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemler ME (2014) Tetraspain proteins promote multiple cancer stages. Nat Rev Cancer 14:49–60

    Article  PubMed  CAS  Google Scholar 

  • Herschman HR (1994) Regulation of prostaglandin synthase-1 and prostaglandin synthase-2. Cancer Metastasis Rev 13:241–256

    Article  PubMed  CAS  Google Scholar 

  • Herschman HR (2002) Historical aspects of COX-2. In: Harris RE (ed) COX-2 blockade in cancer prevention and therapy. Humana Press, Totowa, pp 13–32

    Chapter  Google Scholar 

  • Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y, Dewhirst MW, Fields TA, Casey PJ (2006) The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci 103(21):8173–8178

    Article  PubMed  CAS  Google Scholar 

  • Krzeslak A, Wojcik-Krowiranda K, Forma E, Jozwiak P, Romanowicz H, Bienkiewicz A, Brys M (2012) Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 18(3):721–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar G, Patlolla JM, Madka V, Mohammed A, Li Q, Zhang Y, Biddick L, Singh A, Gillaspy A, Lightfoot S, Steele VE, Kopelovich L, Rao CV (2016) Simultaneous targeting of 5-LOX-COX and ODC block NNK-induced lung adenoma progression to adenocarcinoma in A/J mice. Am J Cancer Res 6(5):894–909

    PubMed  PubMed Central  Google Scholar 

  • Kumari N, Dwarakanath BS, Das A, Bhatt AN (2016) Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 37(9):11553–11572

    Article  PubMed  CAS  Google Scholar 

  • Kurkjian C, Janakiram NB, Guruswamy S, Rao CV, Ozer H (2007) The effects of licofelone, a dual lipoxygenase and cyclooxygenase inhibitor, with and without rosiglitazone in human MCF-7 and MDA-MB-231 breast cancer cells. J Clin Oncol 25(18):1537

    Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 23:323

    Article  CAS  Google Scholar 

  • Li H, Zhu F, Boardman LA, Wang L, Oi N, Liu K, Li X, Fu Y, Limburg PJ, Bode AM, Dong Z (2015) Aspirin prevents colorectal cancer by normalizing EGFR expression. EBioMedicine 2(5):447–455

    Article  PubMed  PubMed Central  Google Scholar 

  • Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A (2013) Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 4(1):84–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, Perez R, Ando S (1996) Gangliosides expressed in human breast cancer. Can Res 56:5165–5171

    CAS  Google Scholar 

  • Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D, Brock HW, Slany R, Hess JL (2003) Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 4(3):197–207

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136(2):331–345

    Article  PubMed  CAS  Google Scholar 

  • Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M, Wei S, Hashimoto A, Yamada A, Yano H, Mazaki Y, Kodama H, Nio Y, Manabe T, Wada H, Kobayashi H, Sabe H (2008) GEP100 links epidermal growth factor receptor signaling to Arf6 activation to induce breast cancer invasion. Nat Cell Biol 10(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Narayanan NK, Nargi D, Attur M, Abramson SB, Narayanan BA (2005) Anticancer effects of licofelone (ML-3000) in prostate cancer cells. Anticancer Res 27(4B):2393–2402

    Google Scholar 

  • Orlando UD, Garona J, Ripoll GV, Maloberti PM, Solano AR, Avagnina A, Gomez DE, Alonso DF, Podestá EJ (2012) The functional interaction between Acyl-CoA synthetase 4, 5-lipoxygenase and cyclooxygenase-2 controls tumor growth: a novel therapeutic target. PLoS One 7(7):e40794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pai R, Soreghan B, Szabo IL, Pavelka M, Baatar D, Tarnawski AS (2002) Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8(3):289–293

    Article  PubMed  CAS  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  • Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439

    Article  PubMed  CAS  Google Scholar 

  • Potapenko IO, Lüders T, Russnes HG, Helland Å, Sørlie T, Kristensen VN, Haakensen VD (2015) Glycan-related gene expression signatures in breast cancer subtypes: relation to survival. Mol Oncol 9(4):861–876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prenzel N, Zwick E, Leserer M, Ullrich A (2000) Tyrosine kinase signaling in breast cancer: epidermal growth factor receptor-convergence point for signal integration and diversification. Breast Cancer Res 2(3):184–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao CV, Janakiram NB, Mohammed A (2012) Lipoxygenase and cyclooxygenase pathways and colorectal cancer prevention. Curr Colorectal Cancer Rep 8(4):316–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasheed S, Barbacid M, Aaronson S, Gardner MB (1982) Origin and biological properties of a new feline sarcoma virus. Virology 117(1):238–244

    Article  PubMed  CAS  Google Scholar 

  • Reader J, Holt D, Fulton A (2011) Prostaglandin E2 EP receptors as therapeutic targets in breast cancer. Cancer Metastasis Rev 30:449–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rettenmier CW, Roussel MF, Sherr CJ (1988) The colony-stimulating factor 1 (CSF-1) receptor (c-fms proto-oncogene product) and its ligand. J Cell Sci Suppl 9:27–44

    Article  PubMed  CAS  Google Scholar 

  • Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Rüttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859

    Article  PubMed  CAS  Google Scholar 

  • Romano M, Claria J (2003) Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J 17(14):1986–1995

    Article  PubMed  CAS  Google Scholar 

  • Rose DP (1997) Dietary fat, fatty acids and breast cancer. Breast Cancer 5(1):7–16

    Article  Google Scholar 

  • Samuelsson B (1991) Arachidonic acid metabolism: role in inflammation. Z Rheumatol 50(Suppl 1):3–6

    PubMed  Google Scholar 

  • Schneider C, Pozzi A (2011) Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev 30:277–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrieber H, Rowley DA (1999) Inflammation and cancer. In: Gallin JI, Snyderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 1117–1129

    Google Scholar 

  • Schwab M, Praml C, Amler LC (1996) Genomic instability in 1p and human malignancies. Genes Chromosom Cancer 16(4):211–229

    Article  PubMed  CAS  Google Scholar 

  • Smalley MJ, Iravani M, Leao M, Grigoriadis A, Kendrick H, Dexter T, Fenwick K, Regan JL, Britt K, McDonald S, Lord CJ, MacKay A, Ashworth A (2007) Regulator of G-protein signalling 2 mRNA is differentially expressed in mammary epithelial subpopulations and over-expressed in the majority of breast cancers. Breast Cancer Res 9:R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  Google Scholar 

  • Su S, Liao J, Liu J, Huang D, He C, Chen F, Yang LB, Wu W, Chen J, Lin L, Zeng Y, Ouyang N, Cui X, Yao H, Su F, Huang J, Lieberman J, Liu Q, Song E (2017) Blocking the recruitment of naïve CD4+ cells reverses immunosuppression in breast cancer. Cell Res 27(4):462–482

    Article  CAS  Google Scholar 

  • Sullivan NJ (2011) Interleukin-6 in the breast tumor microenvironment. In: Gunduz M (ed) Breast cancer-focusing tumor microenvironment, stem cells and metastasis. intech, london, pp 165–182

    Google Scholar 

  • Taki T, Akiyama M, Saito S, Ono R, Taniwaki M, Kato Y, Yuza Y, Eto Y, Hayashi Y (2005) The MYO1F, unconventional myosin type 1F, gene is fused to MLL in infant acute monocytic leukemia with a complete translocation involving chromosomes 7, 11, 19 and 22. Oncogene 24:5191–5197

    Article  PubMed  CAS  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 342:232–235

    Article  Google Scholar 

  • Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B, Galm O, Camara O, Dürst M, Kristiansen G, Huszka C, Knüchel R, Dahl E (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25(24):3479–3488

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1858) Reizung and Reizbarkeit. Arch Pathol Anat Klin Med 14:1–63

    Article  Google Scholar 

  • Virchow R (1863) Aetiologie der neoplastischen Geschwulst/Pathogenie der neoplastischen Geschwulste. In: Die Krankhaften Geschwulste. Verlag von August Hirschwald, Berlin, pp 57–101

  • Wang D, DuBois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10(3):181–193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei Y, Huang H, Qiu Z, Li H, Tan J, Ren G, Wang X (2017) NLRP1 overexpression is correlated with the tumorigenesis and proliferation of human breast tumor. Biomed Res Int 2017:4938473

    PubMed  PubMed Central  Google Scholar 

  • Williams CS, DuBois RN (1996) Prostaglandin endoperoxide synthase: why two isoforms? Am Physiol Soc 270:G393–G400

    CAS  Google Scholar 

  • Williams CB, Yeh ES, Soloff AC (2016) Tumor associated macrophages: unwitting accomplices in breast cancer malignancy. npj. Breast Cancer 2:15025

    PubMed  Google Scholar 

  • Wu X, Li Y, Wang J, Wen X, Marcus MT, Daniels G, Zhang DY, Ye F, Wang LH, Du X, Adams S, Singh B, Zavadil J, Lee P, Monaco ME (2013) Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer. PLoS One 8(10):e77060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu D, Dwyer J, Li H, Duan W, Liu J-P (2008) Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 283(35):23567–23580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoda T, Kikuchi K, Miki Y, Onodera Y, Hata S, Takagi K, Nakamura Y, Hirakawa H, Ishida T, Suzuki T, Ohuchi N, Sasano H, McNamara KM (2015) 11β-Prostaglandin F2α, a bioactive metabolite catalyzed by AKR1C3, stimulates prostaglandin F receptor and induces slug expression in breast cancer. Mol Cell Endocrinol 413:236–247

    Article  PubMed  CAS  Google Scholar 

  • Yu Y-Q, Tao R, Wei J, Xu Q, Liu S-Z, Ju G-Z, Shi J-P, Zhang X, Xie L, Shen Y (2004) No association between the PTGS2/PLA2G4A locus and schizophrenia in a Chinese population. Prostaglandins Leukot Essent Fatty Acids 71:405–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Results are based on data generated by The Cancer Genome Atlas (TCGA) managed by the National Cancer Institute (NCI) and the National Human Genome Research institute (NHGRI), http://genome.nih.gov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall E. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, B.M., Harris, R.E. Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer. Inflammopharmacol 26, 909–923 (2018). https://doi.org/10.1007/s10787-018-0489-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0489-6

Keywords

Navigation