Skip to main content
Log in

Asymmetric Bidirectional 3 ⇔ 2 Qubit Teleportation Protocol Between Alice and Bob Via 9-qubit Cluster State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we present a protocol to perform the task of a bilateral exchange of entanglements between two parties in the case where one of the parties holds a three particle entangled state where the other party holds a two particle entangled state. The protocol is supervised by a controller. The quantum channel used here is a nine particle entangled state. The speciality of the protocol is that in all the involved measurements only a fraction of the possible measurement outcomes appear which substantially simplifies the protocol. Our scheme is a perfect teleportation scheme, that is, the mutual transfer of entangled states is performed with certainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. B 14(5), 893–897 (2005)

    Article  Google Scholar 

  3. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  4. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)

    Article  ADS  MATH  Google Scholar 

  5. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  6. Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54, 269–272 (2015)

    Article  MATH  Google Scholar 

  8. Choudhury, S.B., Dhara, A.: A Bidirectional Teleportation Protocol for Arbitrary Two-qubit State Under the Supervision of a Third Party. Int. J. Theor. Phys. 55, 2275–2285 (2016)

    Article  MATH  Google Scholar 

  9. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014). doi:10.1007/s10773-014-2065-1

    Article  MATH  Google Scholar 

  10. Yu, L.Z., Wu, T.: Probabilistic Teleportation of Three-Qubit Entangled State via Five-qubit Cluster State. Int. J. Theor. Phys. 52(5), 1461–1465 (2013)

    Article  MathSciNet  Google Scholar 

  11. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12–17 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Han, L.F., Xu, H.F.: Probabilistic and Controlled Teleportation of an Arbitrary Two-Qubit State via One Dimensional Five-Qubit Cluster-Class State. Int. J. Theor. Phys. 51(8), 2540–2545 (2012)

    Article  MATH  Google Scholar 

  13. Yan, F., Yan, T.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55, 902–906 (2010)

    Article  Google Scholar 

  14. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77 (3), 032321 (2008)

    Article  ADS  Google Scholar 

  15. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel . Quant. Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  16. Nandi, K., Mazumdar, C.: Quantum Teleportation of a Two Qubit State Using GHZ-like State. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  17. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  18. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  19. Zhu, P.H.: Perfect Teleportation of an Arbitrary Two-Qubit State via GHZ-like States. Int. J. Theor. Phys. 53, 4095–4097 (2014)

    Article  MATH  Google Scholar 

  20. Ai, Q.: Toward quantum teleporting living objects. Sci.Bull. 61, 110–111 (2016)

    Article  Google Scholar 

  21. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    Article  ADS  Google Scholar 

  22. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    Article  ADS  Google Scholar 

  23. Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)

    Article  ADS  Google Scholar 

  24. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quant. Inf. Process. 15, 3383–3392 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, W., Qui, D.W., Zou, X.F.: Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation. Quant. Inf. Process. 15, 2499–2519 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quant. Inf. Process. 15, 913–927 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Shao, Q.: Quantum teleportation of the Two-Qubit entangled state by use of Four-Qubit entangled state. Int. J. Theor. Phys. 52, 2573–2577 (2013). doi:10.1007/s10773-013-1543-1

    Article  MathSciNet  MATH  Google Scholar 

  28. Cao, H.J., Song, H.S.: Phys. Scr. 74(5), 572 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Int. J. Theor. Phys. 52(1), 22–27 (2013)

    Article  Google Scholar 

  30. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and Asymmetric Quantum Controlled Teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015). doi:10.1007/s10773-014-2372-6

    Article  MATH  Google Scholar 

  31. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum. Inf. Process. 14, 3835–3844 (2015). doi:10.1007/s11128-015-1067-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int. J. Theor. Phys. 55, 4197–4204 (2016)

    Article  MATH  Google Scholar 

  33. Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016). doi:10.1007/s10773-015-2671-6

    Article  MATH  Google Scholar 

  34. Li, Y.-H., Nie, L.-P., Li, X.-L., Sang, M.-H.: Asymmetric Bidirectional Controlled Teleportation by Using Six-qubit Cluster State. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    Article  MATH  Google Scholar 

  35. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quant. Inf. Process. 16(2), 49 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  37. Riebe, M., Hffner, H., Roos, C.F., Hnsel, W., Benhelm, J., Lancaster, G.P.T., Krber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2006)

    Article  ADS  Google Scholar 

  38. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    Article  ADS  Google Scholar 

  39. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photonics 8, 770–774 (2014)

    Article  ADS  Google Scholar 

  40. Sheng, Y.-B., Zhou, L., Zhao, S.-M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012). doi:10.1103/PhysRevA.85.042302

    Article  ADS  Google Scholar 

  41. Choudhury, B.S., Dhara, A.: A Three-Qubit state entanglement concentration protocol assisted by Two-Qubit systems. Int. J. Theor. Phys. 52, 3965–3969 (2013). doi:10.1007/s10773-013-1709-x

    Article  MathSciNet  MATH  Google Scholar 

  42. Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n + 1)-qubit states. Quant. Inf. Process. 14, 4523–4536 (2015). doi:10.1007/s11128-015-1128-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete Bell-state measurement. Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  44. Shi, R., Huang, L., Yang, W.: Multi-party quantum state sharing of an arbitrary twoqubit state with Bell-states. Quant. Inf. Process. 10, 231–239 (2011)

    Article  MATH  Google Scholar 

  45. Yang, K., Huang, L., Yang, W., Song, F.: Quantum Teleportation via GHZ-like State. Int. J. Theor. Phys. 48, 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tsai, C.W., Hwang, T.: Teleportation of a Pure EPR State via GHZ-like State. Int. J. Theor. Phys. 49, 1969–1975 (2010). doi:10.1007/s10773-010-0382-6

    Article  MathSciNet  MATH  Google Scholar 

  47. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  48. Raussendorf, R., Briegel, H.J.: A One-Way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  49. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the University Grants Commission of India. The valuable suggestions of the reviewers are gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Samanta, S. Asymmetric Bidirectional 3 ⇔ 2 Qubit Teleportation Protocol Between Alice and Bob Via 9-qubit Cluster State. Int J Theor Phys 56, 3285–3296 (2017). https://doi.org/10.1007/s10773-017-3495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3495-3

Keywords

Navigation