Skip to main content
Log in

Measurement of Thermal Properties of Biosourced Building Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents both experimental and theoretical works concerning the evaluation of the thermal conductivity and thermal diffusivity of hemp concrete. Experimental measurements of thermal properties are performed using a hot-strip technique for temperatures ranging from \(-\)\(^{\circ }{\text{ C }}\) to 30 \(^{\circ }{\text{ C }}\) and relative humidities ranging from 0 % to 95 %, thus creating a large database for this material. These experimental thermal conductivities are then compared with the results from the Krischer theoretical predictive model. The comparison shows good agreement, and a predictive analytical relation between the hemp concrete thermal conductivity, temperature, and relative humidity is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(a\) :

Thermal diffusivity (\({\text{ m }}^{2}\cdot {{\text{ s }}^{-1}}\))

\(b\) :

Hot-strip halfwidth (m)

\(c_{p}\) :

Specific heat (\({\text{ J }}\cdot {\text{ kg }}^{-1}\cdot {{\text{ K }}^{-1}}\))

\(mc_{\mathrm{hs}}\) :

Specific heat capacity (\({\text{ J }}\cdot {{\text{ K }}^{-1}}\))

\(p\) :

Laplace parameter

\(t\) :

Time (s)

\(t_{\mathrm{c}}\) :

Critical time (s)

\(u_{n}\) :

Transcendental solutions (\({\text{ m }}^{-1}\))

\(x,y,z\) :

Cartesian coordinates

\(w\) :

Water content (\({\text{ kg }}\cdot {\text{ kg }}^{-1}\))

\(w_{0}\) :

GAB’s model coefficient (\({\text{ kg }}\cdot {{\text{ kg }}^{-1}}\))

\(I\) :

Current (A)

\(C\) :

GAB’s model coefficient

\(E\) :

Thermal effusivity (\({\text{ J }}\cdot {\text{ m }}^{-2}\cdot {\text{ K }}^{-1}\cdot {{\text{ s }}^{-1/2}}\))

\(H\) :

Sample height (m)

\(K\) :

GAB’s model coefficient

\(L\) :

Sample halfwidth (m)

\(N\) :

Norm

\(R_{\mathrm{c}}\) :

Contact resistance (\({\text{ K }}\cdot {{\text{ W }}^{-1}}\))

\(RH\) :

Relative humidity (%)

\(S\) :

Saturation

\(S_{\mathrm{c}}\) :

Contact surface area (\({\text{ m }}^{2}\))

\(T\) :

Temperature (\(^{\circ }{\text{ C }}\) or K)

\(U\) :

Voltage (V)

\(X\) :

Reduced sensitivity

\(\alpha _{n}\) :

Eigenvalue

\(\beta _{i}\) :

Parameter

\(\varepsilon \) :

Porosity

\(\theta \) :

Laplace space temperature (\(^{\circ }{\text{ C }}\) or K)

\(\lambda \) :

Thermal conductivity (\({\text{ W }}\cdot {{\text{ m }}^{-1}}\cdot {\text{ K }}^{-1}\))

\(\rho \) :

Density (\({\text{ kg }}\cdot {{\text{ m }}^{-3}}\))

\(\varphi \) :

Laplace space flux (W)

\(\psi \) :

Eigenfunction

\(\phi \) :

Time space flux (W)

a:

Dry air

c:

Contact

eff:

Effective

exp:

Experimental

hs:

Hot-strip

s:

Solid

w:

Moisture (liquid and vapor phases)

\(\bot \) :

Orthogonal

//:

Parallel

References

  1. C. Maalouf, A.D. Le Tran, M. Lachi, E. Wurtz, T.H. Mai, Int. J. Math. Models Methods Appl. Sci. 5, 33 (2011)

    Google Scholar 

  2. S. Hallyday, Sustainable Construction (Elsevier, Burlington, MA, 2008)

    Google Scholar 

  3. T. Woolley, H. Thompson, T. McGrogan, M. Alexander, Proceedings of Sustainable Building Conference (Stellenbosch, South Africa, 2004)

  4. R. Bevan, T. Woolley, Hemp Lime Construction: A Guide to Building with Hemp Lime Composites (HIS BRE Press, Bracknell, 2008)

    Google Scholar 

  5. French Association “Construire en Chanvre,” http://www.construction-chanvre.asso.fr. Accessed 12 June 2012

  6. Final Report on the Construction of the Hemp Houses at Haverhill, Suffolk, Client Report Number 209–717, Rev. 1 (Building Research Establishment, 2002)

  7. T. Colinart, P. Glouannec, P. Chauvelon, Constr. Build. Mater. 30, 372 (2012)

    Google Scholar 

  8. F. Collet, M. Bart, L. Serres, J. Miriel, Constr. Build. Mater. 22, 1271 (2008)

    Google Scholar 

  9. A. Evrard, Ph.D. Thesis, Universite Catholique de Louvain, 2008

  10. T.T. Nguyen, V. Picandet, P. Carré, T. Lecompte, S. Amziane, C. Baley, Eur. J. Environ. Civil Eng. 14, 545 (2010)

    Google Scholar 

  11. C. Magniont, G. Escadeillas, M. Coutand, C. Oms-Multon, Eur. J. Environ. Civil Eng. 16, s17 (2012)

    Article  Google Scholar 

  12. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 2002)

    Google Scholar 

  13. M. Woloszyn, C. Rode, Build. Simul. 1, 5 (2008)

    Google Scholar 

  14. E. Latif, R. Rhydwen, M. Pruteanu, C. Wijeyesekera, S. Tucker, M.A. Ciupala, D. Newport, Thermal Conductivity of Building Materials: An Overview of its Determination. Presented at Advances in Computing and Technology: 6th Annual Conference, University of East London, London, 2011

  15. Z. Pavlík, E. Vejmelková, L. Fiala, R. Černý, Int. J. Thermophys. 30, 1999 (2009)

    Google Scholar 

  16. Y. Jannot, P. Meukam, Meas. Sci. Technol. 15, 1932 (2004)

  17. A. Bouguerra, A. Aït-Mokhtar, O. Amiri, M.B. Diop, Int. Commun. Heat Mass Transf. 28, 1065 (2001)

    Article  Google Scholar 

  18. Y. He, Thermochim. Acta 436, 122 (2005)

  19. N. Ozisik, Heat Conduction (Wiley, New York, 2000)

    Google Scholar 

  20. D. Maillet, S. André, J.-C. Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  21. H. Bal, Y. Jannot, N. Quenette, A. Chenu, S. Gaye, Constr. Build. Mater. 31, 144 (2012)

    Google Scholar 

  22. J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd edn. (Dover Publication, New York, 1954)

    MATH  Google Scholar 

  23. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. 1, 187 (1969)

    Google Scholar 

  24. D.A. de Vries, N.H. Afgan, Heat and Mass Transfer in the Biosphere (Wiley, New York, 1972)

    Google Scholar 

  25. W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, Handbook of Heat Transfer, 3rd edn. (McGraw Hill, New York, 1998)

    Google Scholar 

  26. M. Wang, N. Pan, Mater. Sci. Eng. R 63, 1 (2008)

    Google Scholar 

  27. O. Krischer, K. Kröll, Die Wissenschaftlichen Grundlagen der Trocknungstechnik, 2nd edn. (Springer, Berlin, 1963)

    Book  Google Scholar 

  28. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2003)

  29. R. Bergman, Wood Handbook—Wood as an Engineering Material, General Technical Report FPL-GTR-190 (U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, 2010)

  30. E.A. Guggenheim, Application of Statistical Mechanics (Clarendon Press, Oxford, 1966)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the European Union for the equipment co-financing through the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pierre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, T., Colinart, T. & Glouannec, P. Measurement of Thermal Properties of Biosourced Building Materials. Int J Thermophys 35, 1832–1852 (2014). https://doi.org/10.1007/s10765-013-1477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1477-0

Keywords

Navigation