Skip to main content
Log in

Thermophysical Properties of Undercooled Liquid Cu–Ni Alloys

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental data for the surface tension, density, and electrical resistivity of undercooled liquid Cu–Ni alloys of different compositions and at different temperatures are presented. The experiments were performed in facilities that combine the containerless positioning method of electromagnetic levitation with contactless measurement techniques. Although Cu–Ni alloys are rather simple from a chemical point of view, the data for density, surface tension, and electrical resistivity unveil the occurrence of short-range atomic order processes in the melt. For the density this manifests in a composition-dependent excess volume, for the surface tension in smaller values due to an increased surface segregation, and for the electrical resistivity in a deviation from the linear temperature dependence at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. B. Massalski, Binary Alloy Phase Diagrams (Americans Society of Metals, Materials Park, Ohio, 1986).

  2. S. Srikanth and K. T. Jacob, Mat.Sci.Technol. 5: 427 (1989).

    Google Scholar 

  3. P. R. Sahm, I. Egry, and T. Volkmann, Schmelze, Erstarrung, Grenz.äche (Vieweg, Wiesbaden, 1999).

  4. S. Y. Shiraishi and R. G. Ward, Can.Met.Quat. 3: 117 (1964).

    Google Scholar 

  5. A. Saito and S. Watanabe, Nipp.Kinz.Gakk. 35: 554 (1971).

    Google Scholar 

  6. S. K. Chung, D. B. Thiessen, and W. K. Rhim, Rev.Sci.Instrum. 67: 3175 (1996).

    Google Scholar 

  7. J. Brillo and I. Egry, Z.Metallkd. 95: 691 (2004).

    Google Scholar 

  8. J. Brillo and I. Egry, Int.J.Thermophys. 24: 1155 (2003).

    Google Scholar 

  9. S. Schneider, I. Egry, and I. Seyhan, Int.J.Thermophys. 23: 1241 (2002).

    Google Scholar 

  10. E. Gorges and I. Egry, J.Mater.Sci. 30: 2517 (1995).

    Google Scholar 

  11. E. Gorges, Bestimmung der Dichte und Ober.ächenspannung von levitierten.¨ussigen Met-allegierungen am Beispiel des Systems Kupfer–Nickel (Ph. D. Thesis, RWTH Aachen, Aachen, 1996).

    Google Scholar 

  12. Ya. A. Kraftmakher, Meas.Sci.Technol. 2: 253 (1991).

    Google Scholar 

  13. J. E. Enderby, S. Ansell, S. Krishnan, D. L. Price, and M.-L. Saboungi, Appl.Phys.Lett. 71: 116 (1997).

    Google Scholar 

  14. T. Richardsen and G. Lohöfer, Int.J.Thermophys. 20: 1029 (1999).

    Google Scholar 

  15. T. Richardsen, Ein induktives Messverfahren zur Bestimmung der elektrischen Leitfähigkeit an unterk ¨uhlten Metallschmelzen (Shaker, Aachen, 2001).

  16. S. Takeuchi and H. Endo, Trans.JIM 3: 35 (1962).

    Google Scholar 

  17. T. Richardsen, G. Lohöfer, and I. Egry, Int.J.Thermophys. 23: 1207 (2002).

    Google Scholar 

  18. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (University Press, Cambridge, 1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohöfer, G., Brillo, J. & Egry, I. Thermophysical Properties of Undercooled Liquid Cu–Ni Alloys. International Journal of Thermophysics 25, 1535–1550 (2004). https://doi.org/10.1007/s10765-004-5757-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-004-5757-6

Navigation