Skip to main content
Log in

Scalable Microstructured Photoconductive Terahertz Emitters

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The development of scalable emitters for pulsed broadband terahertz (THz) radiation is reviewed. Their large active area in the 1 – 100 mm2 range allows for using the full power of state-of-the-art femtosecond lasers for excitation of charge carriers. Large fields for acceleration of the photogenerated carriers are achieved at moderate voltages by interdigitated electrodes. This results in efficient emission of single-cycle THz waves. THz field amplitudes in the range of 300 V/cm and 17 kV/cm are reached for excitation with 10 nJ pulses from Ti:sapphire oscillators and for excitation with 5 μJ pulses from amplified lasers, respectively. The corresponding efficiencies for conversion of near-infrared to THz radiation are 2.5 × 10-4 (oscillator excitation) and 2 × 10-3 (amplifier excitation). In this article the principle of operation of scalable emitters is explained and different technical realizations are described. We demonstrate that the scalable concept provides freedom for designing optimized antenna patterns for different polarization modes. In particular emitters for linearly, radially and azimuthally polarized radiation are discussed. The success story of photoconductive THz emitters is closely linked to the development of mode-locked Ti:sapphire lasers. GaAs is an ideal photoconductive material for THz emitters excited with Ti:sapphire lasers, which are widely used in research laboratories. For many applications, especially in industrial environments, however, fiber-based lasers are strongly preferred due to their lower cost, compactness and extremely stable operation. Designing photoconductive emitters on InGaAs materials, which have a low enough energy gap for excitation with fiber lasers, is challenging due to the electrical properties of the materials. We discuss why the challenges are even larger for microstructured THz emitters as compared to conventional photoconductive antennas and present first results of emitters suitable for excitation with ytterbium-based fiber lasers. Furthermore an alternative concept, namely the lateral photo-Dember emitter, is presented. Due to the strong THz output scalable emitters are well suited for THz systems with fast data acquisition. Here the application of scalable emitters in THz spectrometers without mechanical delay stages, providing THz spectra with 1 GHz spectral resolution and a signal-to-noise ratio of 37 dB within 1 s, is presented. Finally a few highlight experiments with radiation from scalable THz emitters are reviewed. This includes a brief discussion of near-field microscopy experiments as well as an overview over gain studies of quantum-cascade lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Tonouchi, Nature Photonics 1, 97 (2007).

    Google Scholar 

  2. D. Mittleman (ed.), Sensing with THz Radiation, Springer, Heidelberg, 2002.

    Google Scholar 

  3. S. Ganichev, W. Prettl, Intense Terahertz Excitation of Semiconductors, Oxford Univ. Press, USA, 2006.

    Google Scholar 

  4. K. Reimann, Rep. Prog. Phys. 70, 1597 (2007).

    Google Scholar 

  5. M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694, (1990).

    Google Scholar 

  6. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).

    Google Scholar 

  7. C. Fattinger and D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).

    Google Scholar 

  8. B. B. Hu, X.-C. Zhang, and D. H. Auston Appl. Phys. Lett. 56, 506 (1990)

    Google Scholar 

  9. T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, Appl. Phys. Lett. 66, 10 (1995).

    Google Scholar 

  10. Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996).

    Google Scholar 

  11. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Appl. Phys. Lett. 74, 1516 (1999).

    Google Scholar 

  12. P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach J. Soc. Am B 18, 313 (2001).

    Google Scholar 

  13. T. Löffler, M. Kreß, M. Thomson, T. Hahn, N. Hasegawa, and H. G. Roskos, Semicond. Sci. Technol. 20, 134 (2005).

    Google Scholar 

  14. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, Opt. Express 13, 5353 (2005).

    Google Scholar 

  15. J. Hebling, G. Almasi, T. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).

    Google Scholar 

  16. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, Opt. Commun. 281, 3567 (2008).

    Google Scholar 

  17. H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, Phys. Rev. Lett. 71, 2725 (1993).

    Google Scholar 

  18. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).

    Google Scholar 

  19. M. D. Thomson, M. Kreß, T. Löffler, and H. G. Roskos Laser Photon. Rev. 1, 349 (2007).

    Google Scholar 

  20. N. Karpowicz, X. Lu, and X.-C. Zhang, J. Mod. Opt. 56, 1137 (2009).

    MATH  Google Scholar 

  21. M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys. 44, 083001 (2011).

    Google Scholar 

  22. A. Sell, R. Scheu, A. Leitenstorfer, and R. Huber, Appl. Phys. Lett. 93, 251107 (2008).

    Google Scholar 

  23. A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).

    Google Scholar 

  24. M. Tani, S. Matsuura, K. Sakai, and S. I. Nakashima, Appl. Optics 36, 7853 (1997).

    Google Scholar 

  25. R. Yano, H. Gotoh, Y. Hirayama, S. Miysahita, Y. Kadoya, and T. Hattori, J. Appl. Phys. 97, 103103 (2005).

    Google Scholar 

  26. H. Harde and D. Grischkowsky, J. Soc. Am. B 8, 1642 (1991).

    Google Scholar 

  27. D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, Appl. Phys. Lett. 59, 262 (1991).

    Google Scholar 

  28. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, Appl. Phys. Lett. 69, 3632 (1996).

    Google Scholar 

  29. T.-A. Liu, G.-R. Lin, Y.-C. Lee, S.-C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, J. Appl. Phys. 98, 013711 (2005).

    Google Scholar 

  30. D. H. Auston, Appl. Phys. Lett. 26, 101 (1975).

    Google Scholar 

  31. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45284 (1984).

  32. P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, J. Opt. Soc. Am. B 11, 2533 (1994).

    Google Scholar 

  33. E. Budiarto, J. Margolies, S. Jeong, J. Son, and J. Bokor, IEEE J. of Quantum Electron. 32, 1839 (1996).

    Google Scholar 

  34. D. You, R. R. Jones, and P. H. Bucksbaum, Opt. Lett. 18, 290 (1993).

    Google Scholar 

  35. J. T. Darrow, X.-C. Zhang, and D. H. Auston, IEEE J. Quantum Electron. 28 1607 (1992).

    Google Scholar 

  36. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).

    Google Scholar 

  37. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, Opt. Lett. 31, 1546 (2006).

    Google Scholar 

  38. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm and T. Dekorsy, Opt. Express 18, 9251 (2010).

    Google Scholar 

  39. M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 051104 (2005).

    Google Scholar 

  40. M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 163504 (2005).

    Google Scholar 

  41. A. Takazato, M. Kamakura, T. Tmatsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91, 011101 (2007).

    Google Scholar 

  42. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, Opt. Express 16, 9565 (2008).

    Google Scholar 

  43. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296 (2010).

    Google Scholar 

  44. F. Peter, S. Winnerl, H. Schneider, M. Helm, and K. Köhler, Appl. Phys. Lett. 93, 101102 (2008).

    Google Scholar 

  45. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Phys. Rev. B 61, 16642 (2000).

    Google Scholar 

  46. T. Dekorsy, T. Pfeifer, W. Kutt, and H. Kurz, Phys. Rev. B 47, 3842 (1993).

    Google Scholar 

  47. G. Rodriguez, S. R. Caceres, and A. J. Taylor, Opt. Lett. 19, 1994 (1994).

    Google Scholar 

  48. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996).

    Google Scholar 

  49. Z. S. Piao, M. Tani, and K. Sakai, Jpn. J. Appl. Phys., Part 1 39, 96 (2000).

    Google Scholar 

  50. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, Phys. Rev. B 71, 195301 (2005).

    Google Scholar 

  51. W. Shi, J. Xu, and X.-C. Zhang, Opt. Lett. 1, 308 (2003).

    Google Scholar 

  52. A. Dreyhaupt, F. Peter, S. Winnerl, S. Nitsche, M. Wagner, H. Schneider, M. Helm, and K. Köhler, Technisches Messen 75, 3 (2008).

    Google Scholar 

  53. P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, Semiconduct. Sci. Technol. 20, 121 (2005).

    Google Scholar 

  54. G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instr. 73, 1715 (2002).

    Google Scholar 

  55. S. R. Andrews, A. Armitage, P. G. Huggard, and A. Hussain, Phys. Med. and Biol. 47, 3705 (2002).

    Google Scholar 

  56. D. Krökel, D. Grischkowsky, and M. B. Ketchen, Appl. Phys. Lett. 54, 1046 (1989).

    Google Scholar 

  57. E. Sato and T. Shibatas, Appl. Phys. Lett. 55, 2748 (1989).

    Google Scholar 

  58. S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).

    Google Scholar 

  59. J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490 (2005).

    Google Scholar 

  60. D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).

    Google Scholar 

  61. J. Darrow, X.-C. Zhang, D. Auston and J. Morse, IEEE J. of Quantum Electron. 28, 1607 (1992).

    Google Scholar 

  62. G. Rodrigeuez and A. J. Taylor, Opt. Lett. 21, 2533(1994).

    Google Scholar 

  63. K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, J. Appl. Phys. 43, 1038 (2004).

    Google Scholar 

  64. D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117 (2006).

    Google Scholar 

  65. P. K. Benicewicz and A. J. Taylor, Opt. Lett. 18, 1332 (1993).

    Google Scholar 

  66. J. Z. Xu and X.-C. Zhang, Opt. Lett. 27, 1067 (2002).

    Google Scholar 

  67. K. Huska, G. Klatt, J. Hetterich, U. Geyer, T. Dekorsy, G. Bastian, and U. Lemmer, Electron. Lett. 45, 851 (2009).

    Google Scholar 

  68. G. P. Acuna, F. F. Buersgens, C. Lang, M. Handloser, A. Guggenmos, and R. Kersting, Electron. Lett. 44, 229 (2008).

    Google Scholar 

  69. M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 91, 181124 (2007).

    Google Scholar 

  70. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, A. Tünnermann, Appl. Phys. Lett. 93, 091110 (2008).

    Google Scholar 

  71. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, Appl. Phys. B 96, 233 (2009).

    Google Scholar 

  72. D. G. Hall, Opt. Lett. 21, 9 (1996).

    Google Scholar 

  73. K.S. Youngworth and T.G. Brown, Opt. Express 7, 77 (2000).

    Google Scholar 

  74. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, Opt. Express 17, 1571 (2009).

    Google Scholar 

  75. T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).

    Google Scholar 

  76. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, Opt. Express 14, 279 (2006).

    Google Scholar 

  77. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, Opt. Lett. 32, 433 (2007).

    Google Scholar 

  78. E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, Appl. Phys. Lett. 86, 254102 (2005).

    Google Scholar 

  79. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 287, 415 (2000).

    Google Scholar 

  80. K. Wang and D. M. Mittleman, Nature 432, 376 (2004).

    Google Scholar 

  81. H. P. Urbach and S. F. Pereira, Phys. Rev. Lett. 100, 123904 (2008).

    Google Scholar 

  82. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Comm. 179, 1 (2000).

    Google Scholar 

  83. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).

    Google Scholar 

  84. T.-A. Liu, M. Tani, and C.-L. Pan, J. Appl. Phys. 93, 2996 (2003).

    Google Scholar 

  85. A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, Appl. Phys. Lett. 57, 1331 (1990).

    Google Scholar 

  86. D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, Phys. Rev. B 42, 3578 (1990).

    Google Scholar 

  87. R.-H. Chou, T.-A. Liu, and C.-L. Pan, J. Appl. Phys. 104, 053121 (2008).

    Google Scholar 

  88. B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine, and F. Schiettekatte, J. Vac. Sci. Technol. A 24, 774 (2006).

    Google Scholar 

  89. B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, J. Phys. Condens. Matter 17, 7327 (2005).

    Google Scholar 

  90. B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, Semicond. Sci. Technol. 21, 283 (2006).

    Google Scholar 

  91. J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, Phys. Rev. B 70, 235330 (2004).

    Google Scholar 

  92. S. Winnerl, F. Peter, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, IEEE J. Sel. Top. Quantum Electron. 14, 449 (2008).

    Google Scholar 

  93. T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, Appl. Phys. Lett. 83, 1322 (2003).

    Google Scholar 

  94. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, M. B. Johnston, J. Appl. Phys. 104, 053113 (2008).

    Google Scholar 

  95. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, Appl. Phys. Lett. 91, 081109 (2007).

    Google Scholar 

  96. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).

    Google Scholar 

  97. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011)

    Google Scholar 

  98. A. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, Appl. Phys. Lett. 64, 137 (1994).

    Google Scholar 

  99. A. Weling and D. H. Auston, J. Soc. Am. B 13, 2783 (1996).

    Google Scholar 

  100. J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, Opt. Express 19, 19114 (2011).

    Google Scholar 

  101. J. R. Danielson, A. D. Jemeson, J. L. Tomaino, H. Hui, J. D. Wentzel, Y.-S. Lee, and K. L. Vodopyanov, J. Appl. Phys. 104, 033111 (2008).

    Google Scholar 

  102. B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, Opt. Express 17, 15001 (2009).

    Google Scholar 

  103. K. Köhler, J. Wagner, P. Ganser, D. Serries, T. Geppert, M. Maier, and L. Kirste, J. Phys.: Condens. Matter 16, S2995 (2004).

    Google Scholar 

  104. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, Opt. Commun. 261, 114 (2006).

    Google Scholar 

  105. H. Dember, Z. Phys. 32, 554 (1931).

    Google Scholar 

  106. T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Phys. Rev. B 47, 3842 (1993).

    Google Scholar 

  107. T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, Phys. Rev. B 53, 4005 (1996).

    Google Scholar 

  108. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, J. Appl. Phys. 91, 5533 (2002).

    Google Scholar 

  109. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).

    Google Scholar 

  110. R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davis, and M. Pepper, Appl. Phys. Lett. 76, 2038 (2000).

    Google Scholar 

  111. M. Migita and M. Hangyo, Appl. Phys. Lett. 79, 3438 (2001).

    Google Scholar 

  112. M. B. Johnston, D. M. Whittaker, D. Dowd, A. G. Davis, E. H. Linfield, and D. A. Richie, Opt. Lett. 27, 1935 (2002).

    Google Scholar 

  113. M. Zedler, C. Janke, P. Haring Bolivar, H. Kurz, and H. Künzel, Appl. Phys. Lett. 83, 4196 (2003).

    Google Scholar 

  114. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, Phys. Rev. B 65, 165301 (2002).

    Google Scholar 

  115. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. Johnston, M. Fischer, J. Faist, and T. Dekorsy, Opt. Express 18, 4939 (2010).

    Google Scholar 

  116. G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, Electron. Lett. 46, S24 (2010).

    Google Scholar 

  117. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, Appl. Phys. Lett. 98, 021114 (2011).

    Google Scholar 

  118. S. Winnerl, A. Dreyhaupt, F. Peter, D. Stehr, M. Helm and T. Dekorsy, Springer Proc. in Physics 110, 73 (2006).

    Google Scholar 

  119. T. Hattori, K. Egawa, S. Ookuma, and T. Ititani, Jap. J. of Appl. Phys. 45, L422 (2006)

    Google Scholar 

  120. A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).

    Google Scholar 

  121. This is the field inside the ZnTe crystal, it corresponds to a field of 35 kV/cm in air. In this paper all values for THz fields are the values in the sensing crystal.

  122. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal and J. Kuhl, Appl. Phys. B: Lasers Opt. 78, 593 (2004).

    Google Scholar 

  123. R. R. Jones, D. You, and P. H. Bucksbaum, Phys. Rev. Lett. 70, 1236 (1993).

    Google Scholar 

  124. S. D. Ganichev, J. Diener, and W. Prettl, Appl. Phys. Lett. 64, 1977 (1994).

    Google Scholar 

  125. M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, Phys. Rev. Lett. 105, 167401 (2010).

    Google Scholar 

  126. J. Xu and X.-C. Zhang, Opt. Lett. 29, 2082 (2004).

    Google Scholar 

  127. F. Ellrich, D. Molter, T. Weinland, M. Theuer, J. Jonuscheit, and R. Beigang, in IEEE Proceedings of the 33rd International Conference on Infrared, Millimeter, and TerahertzWaves (IEEE, 2008).

  128. D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, Opt. Express 18, 26163 (2010).

    Google Scholar 

  129. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, Appl. Opt. 26, 4303 (1987).

    Google Scholar 

  130. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, Opt. Express 14, 340 (2005).

    Google Scholar 

  131. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instr. 78, 035107 (2007).

    Google Scholar 

  132. G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, IEEE J. Sel. Top. In Quantum Electron. 17, 159 (2011).

    Google Scholar 

  133. F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, Proc. SPIE 6881, 68810O (2008).

    Google Scholar 

  134. D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, Opt. Lett. 35, 3799 (2010).

    Google Scholar 

  135. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, Opt. Express 18, 1613 (2010).

    Google Scholar 

  136. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, J. Infrared Milli Terahz Waves 32, 596 (2011).

    Google Scholar 

  137. K. Schröck, F. Schröder, M. Heyden, R. A. Fischer and M. Havenith, Phys. Chem. Chem. Phys. 10, 4732 (2008).

    Google Scholar 

  138. P. Kužel, F. Kadlec, J. Petzelt, J. Schubert and G. Panaitov, Appl. Phys. Lett. 91, 232911 (2007).

    Google Scholar 

  139. C. Kadlec, F. Kadlec, H. Nemec, P. Kužel, J. Schubert, G. Panaitov, J. Phys.: Condens. Matter 21, 115902 (2009).

    Google Scholar 

  140. P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photonics Rev. 5, 124 (2011).

    Google Scholar 

  141. R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, Phys. Rev. Lett. 70, 651 (1993).

    Google Scholar 

  142. F. Keilmann, Infrared Phys. and Technol. 36, 217 (1994).

    Google Scholar 

  143. S. Hunsche and M. Koch, Opt. Commun. 150, 22 (1998).

    Google Scholar 

  144. U. Schade and K. Holldack, Appl. Phys. Lett. 84, 1422 (2004).

    Google Scholar 

  145. M. Berta, P. Kužel and F. Kadlec, J. Phys. D: Appl. Phys. 42, 155501 (2009).

    Google Scholar 

  146. F. Keilmann and R. Hillenbrand, Philos. Trans. R. Soc. London, Ser. A 362, 787 (2004).

    Google Scholar 

  147. B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, Appl. Phys. Lett. 70, 2667 (1997).

    Google Scholar 

  148. H. T. Chen, R. Kersting, and G. C. Cho, Appl. Phys. Lett. 83, 3009 (2003).

    Google Scholar 

  149. F. F. Buersgens, H. T. Chen, and R. Kersting, Appl. Phys. Lett. 88, 112115 (2006).

    Google Scholar 

  150. H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, Opt. Express 16, 3430 (2008).

    Google Scholar 

  151. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, Adv. Mater. 19, 2209 (2007).

    Google Scholar 

  152. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, Nano Lett. 8, 3766 (2008).

    Google Scholar 

  153. R. Jacob, S. Winnerl, H. Schneider, M. Helm, M. T. Wenzel, H.-G. Von Ribbeck, L. M. Eng, and S. C. Kehr, Opt. Express 18, 26206 (2010).

    Google Scholar 

  154. N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 81, 1558 (2002).

    Google Scholar 

  155. J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, Appl. Phys. Lett. 97, 031115 (2010).

    Google Scholar 

  156. A. Bitzer, H. Merbold. A. Thoman, T. Feurer, H. Helm, and M. Walther, Opt. Express 17, 3826 (2009).

    Google Scholar 

  157. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotto, and F. Rossi, Nature 417, 156 (2002).

    Google Scholar 

  158. J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, Nature 449, 698 (2007).

    Google Scholar 

  159. N. Jukam, S. Dhillon, Z.-Y. Zhao, G. Duerr, J. Armijo, N. Sirmons, S. Hameau, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, and J. Tignon, IEEE J. Sel. Top. Quantum Electron. 14, 436 (2008).

    Google Scholar 

  160. N. Jukam, S. S. Dhillon, D. Oustinov, Z.-Y. Zhao, S. Hameau, J. Tignon, S. Barbieri, A. Vasanelli, P. Filloux, C. Sirtori, and X. Marcadet, Appl. Phys. Lett. 93, 101115 (2008).

    Google Scholar 

  161. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, Appl. Phys. Lett. 94, 251108 (2009).

    Google Scholar 

  162. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, Nature Photon. 3, 715 (2009).

    Google Scholar 

  163. D. Oustinov, N. Jukam, R. Rungsawang, J. Madéo, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, J. Tignon, and S. Dhillon, Nature Comm. 1, 69 (2010).

  164. H. Luo, S. R. Laframboise, Z. R. Wasilewsik, G. C. Aers, H. C. Liu, and J. C. Cao, Appl. Phys. Lett. 90, 041112 (2007).

    Google Scholar 

Download references

Acknowledgement

I am thankful to a number of people who contributed with ideas, experimental work and fruitful discussions to the development of scalable microstructured THz emitters, most importantly to T. Dekorsy, A. Dreyhaupt, F. Peter, B. Zimmermann, R. Hubrich, M. Mittendorff, M. Wagner, D. Stehr, H. Schneider, and M. Helm. Furthermore fruitful discussions with G. Klatt, C. Janke, M. Beck, A. Bartels, M. C. Hoffmann, A. Leitenstorfer, R. Huber, F. Keilmann, and E. Bründermann are acknowledged. Concerning substrate materials we acknowledge cooperation with K. Köhler, H. Künzel, R. Dietz, B. Sartorius, and A. Kolitsch. For cleanroom processing we are indebted to H. Hilliges, B. Schmidt and S. Howitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Winnerl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winnerl, S. Scalable Microstructured Photoconductive Terahertz Emitters. J Infrared Milli Terahz Waves 33, 431–454 (2012). https://doi.org/10.1007/s10762-011-9861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-011-9861-y

Keywords

Navigation