Skip to main content
Log in

FGF-21 Elevated IL-10 Production to Correct LPS-Induced Inflammation

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 21 (FGF-21) has been previously judged as a major metabolic regulator. In this paper, we show that FGF-21 has a potential role in anti-inflammation and immunoregulation. In vivo, treatment with exogenous FGF-21 can alleviate LPS-induced inflammation. In vitro, FGF-21 inhibited LPS-induced IL-1β expression in THP-1 cells. Furthermore, besides the NF-κB pathway, the mechanism of action of FGF-21 was observed to involve the elevation of IL-10 in the ERK1/2 pathway. This study clearly indicates that FGF21 can be used as an attractive target for the management of inflammatory disorders. This piece of research indicates that FGF-21 could have much value in the management of inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gariani, K., G. Drifte, I. Dunn-Siegrist, J. Pugin, and F.R. Jornayvaz. 2013. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocrine Connection. 2 (3): 146–153.

    Article  CAS  Google Scholar 

  2. Dreiher, J., Y. Almog, C.L. Sprung, et al. 2012. Temporal trends in patient characteristics and survival of intensive care admissions with sepsis: a multicenter analysis. Critical Care Medicine 40 (3): 855–860.

    Article  PubMed  Google Scholar 

  3. Longo, C.J., D.K. Heyland, H.N. Fisher, et al. 2007. A long-term follow-up study investigating health-related quality of life and resource use in survivors of severe sepsis: comparison of recombinant human activated protein C with standard care. Critical Care 11 (6): R128.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Camporez, J.P., F.R. Jornayvaz, M. Petersen, D. Pesta, B.A. Guigni, J. Serr, D. Zhang, M. Kahn, V.T. Samuel, M.J. Jurczak, et al. 2013. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154: 3099–3109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Coskun, T., H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen, D.E. Moller, and A. Kharitonenkov. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149: 6018–6027.

    Article  PubMed  CAS  Google Scholar 

  6. Kharitonenkov, A., T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath, G.E. Sandusky, L.J. Hammond, J.S. Moyers, R.A. Owens, et al. 2005. FGF-21 as a novel metabolic regulator. Journal of Clinical Investigation 115: 1627–1635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kharitonenkov, A., V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno, B.C. Hansen, A.B. Shanafelt, and G.J. Etgen. 2007. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148: 774–781.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, Wen-Fei, Si-Ming Li, Gui-Ping Ren, Wei Zheng, Yu-Jia Lu, Yin-Hang Yu, et al. 2014. Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats. Endocrine. https://doi.org/10.1007/s12020-014-0433-5.

  9. Feingold, Kenneth R., Carl Grunfeld, Josef G. Heuer, Akanksha Gupta, Martin Cramer, Tonghai Zhang, et al. 2012. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 153 (6): 2689–2700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Johnson, C.L., J.Y. Weston, S.A. Chadi, E.N. Fazio, M.W. Huff, A. Kharitonenkov, et al. 2009. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 137: 1795–1804.

    Article  PubMed  CAS  Google Scholar 

  11. Li, S.M., W.F. Wang, L.H. Zhou, L. Ma, Y. An, W.J. Xu, T.H. Li, Y.H. Yu, D.S. Li, and Y. Liu. 2014, 2014. Fibroblast growth factor 21 expressions in white blood cells and sera of patients with gestational diabetes mellitus during gestation and postpartum. Endocrine. https://doi.org/10.1007/s12020-014-0309-8.

  12. Wang, Wen-fei, Lei Ma, Ming-yao Liu, Ting-ting Zhao, Tong Zhang, Yong-bi Yang, Hong-xue Cao, Xiao-hui Han, and De-shan Li. 2014. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation. Endocrine. https://doi.org/10.1007/s12020-014-0502-9.

  13. Koch, L., D. Frommhold, K. Buschmann, et al. 2014, 2014. LPS-and LTA-induced expression of IL-6 and TNF-α in neonatal and adult blood: role of MAPKs and NF-κB. Mediators of Inflammation.

  14. Kim, H.J., J. Hart, N. Knatz, et al. 2004. Janus kinase 3 down-regulates lipopolysaccharide-induced IL-1 beta-converting enzyme activation by autocrine IL-10[J]. Journal of Immunology 172 (8): 4948–4955.

    Article  CAS  Google Scholar 

  15. Cao, Z., M. Tanaka, C. Regnier, et al. 1999. NF-κB activation by tumor necrosis factor and interleukin-1[J]. Cold Spring Harbor Symposia on Quantitative Biology 64 (1): 473–484.

    Article  PubMed  CAS  Google Scholar 

  16. Jacobs, R.F., D.R. Tabor, A.W. Burks, et al. 1989. Elevated interleukin-1 release by human alveolar macrophages during the adult respiratory distress syndrome[J]. American Review of Respiratory Disease 140 (6): 1686–1692.

    Article  PubMed  CAS  Google Scholar 

  17. Siler, T.M., J.E. Swierkosz, T.M. Hyers, et al. 2009. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome[J]. Experimental Lung Research 15 (6): 881–894.

    Article  Google Scholar 

  18. Kowluru, R.A., Q. Zhong, J.M. Santos, et al. 2014. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy[J]. Nutrition and Metabolism 11 (1): 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee, M.S., S.E. Choi, E.S. Ha, et al. 2012. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB[J]. Metabolism 61 (8): 1142–1151.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, Y., F. Bai, W. Wang, et al. 2015. Fibroblast growth factor 21 protects mouse brain against d-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.[J]. Pharmacology, Biochemistry, and Behavior 133 (1): 122.

    Article  PubMed  CAS  Google Scholar 

  21. Robertson, S.A., R.J. Skinner, and A.S. Care. 2006. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice[J]. Journal of Immunology 177 (7): 4888–4896.

    Article  CAS  Google Scholar 

  22. Guarda, G., M. Braun, F. Staehli, et al. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation[J]. Immunity 34 (2): 213–223.

    Article  PubMed  CAS  Google Scholar 

  23. Saraiva, Margarida, and Anne O’Garra. 2010. The regulation of IL-10 production by immune cells[J]. Nature Reviews Immunology 10 (3): 170.

    Article  PubMed  CAS  Google Scholar 

  24. Lin, X.L., X.L. He, J.F. Zeng, et al. 2014. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells[J]. DNA and Cell Biology 33 (8): 514–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by the “Young Talents” Project of Northeast Agricultural University (grant number 16QC27) and Natural Science Foundation of Heilongjiang Province of China (grant number C2017023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-shan Li or Wen-fei Wang.

Ethics declarations

Ethics Statement

The study was approved by the Ethics Committee of Northeast Agricultural University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jy., Wang, N., Khoso, M.H. et al. FGF-21 Elevated IL-10 Production to Correct LPS-Induced Inflammation. Inflammation 41, 751–759 (2018). https://doi.org/10.1007/s10753-018-0729-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0729-3

KEY WORDS

Navigation