Skip to main content

Advertisement

Log in

The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammation plays important roles in the initiation and progress of many diseases. Caffeic acid (CaA) is a naturally occurring hydroxycinnamic acid derivative, which shows hypotoxicity and diverse biological functions, including anti-inflammation. The molecular mechanisms involved in the CaA-inhibited inflammatory response are very complex; generally, the down-regulated phosphorylation of such important transcriptional factors, for example, nuclear factor κB (NF-κB) and signal transducers and activators of transcription-3 (STAT-3), plays an important role. Here, we found that in RAW264.7 macrophage cells, CaA blocked lipopolysaccharide (LPS)-stimulated inflammatory response by attenuating the expression of 14-3-3ζ (a phosphorylated protein regulator). Briefly, the increased expression of 14-3-3ζ was involved in the LPS-induced inflammatory response. CaA blocked the LPS-elevated 14-3-3ζ via attenuating the LPS-induced tumor necrosis factor-α (TNF-α) secretion and via enhancing the 14-3-3ζ ubiquitination. These processes inhibited the LPS-induced activation (phosphorylation) of NF-κB and STAT-3, in turn blocked the transcriptional activation of inducible NO synthase (iNOS), interleukin-6 (IL-6), and TNF-α, and finally attenuated the productions of nitric oxide (NO), IL-6, and TNF-α. By understanding a novel mechanism whereby CaA inhibited the 14-3-3ζ, our study expanded the understanding of the molecular mechanisms involved in the anti-inflammation potential induced by CaA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang, M., J. Zhou, L. Wang, B. Li, J. Guo, X. Guan, Q. Han, and H. Zhang. 2014. Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-alpha), IL-6 and IL-1beta levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biological & Pharmaceutical Bulletin 37: 347–354.

    Article  CAS  Google Scholar 

  2. Zhao, B., B. Zhou, L. Bao, Y. Yang, and K. Guo. 2015. Alpha-tomatine exhibits anti-inflammatory activity in lipopolysaccharide-activated macrophages. Inflammation 38: 1769–1776.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y., C. Liu, B. Dong, X. Ma, L. Hou, X. Cao, and C. Wang. 2015. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38: 756–764.

    Article  CAS  PubMed  Google Scholar 

  4. Liou, C.J., W.B. Len, S.J. Wu, C.F. Lin, X.L. Wu, and W.C. Huang. 2014. Casticin inhibits COX-2 and iNOS expression via suppression of NF-kappaB and MAPK signaling in lipopolysaccharide-stimulated mouse macrophages. Journal of Ethnopharmacology 158 (Pt A): 310–316.

    Article  CAS  PubMed  Google Scholar 

  5. Choi, Y.H., G.Y. Kim, and H.H. Lee. 2014. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-kappaB signaling pathways. Drug Design, Development and Therapy 8: 1941–1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung, Y.C., M.E. Kim, J.H. Yoon, P.R. Park, H.Y. Youn, H.W. Lee, and J.S. Lee. 2014. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-kappaB pathway regulation. Immunopharmacology and Immunotoxicology 36: 426–432.

    Article  CAS  PubMed  Google Scholar 

  7. Kwon, D.J., Y.S. Bae, S.M. Ju, G.S. Youn, S.Y. Choi, and J. Park. 2014. Salicortin suppresses lipopolysaccharide-stimulated inflammatory responses via blockade of NF-kappaB and JNK activation in RAW 264.7 macrophages. BMB Reports 47: 318–323.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meng, A., X. Zhang, and Y. Shi. 2014. Role of p38 MAPK and STAT3 in lipopolysaccharide-stimulated mouse alveolar macrophages. Experimental and Therapeutic Medicine 8: 1772–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Byun, E.B., N.Y. Sung, M.S. Yang, B.S. Lee, D.S. Song, J.N. Park, J.H. Kim, B.S. Jang, D.S. Choi, S.H. Park, Y.B. Yu, and E.H. Byun. 2014. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-kappaB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 74: 255–264.

    Article  CAS  Google Scholar 

  10. Thandavarayan, R.A., V.V. Giridharan, F.R. Sari, S. Arumugam, P.T. Veeraveedu, G.N. Pandian, S.S. Palaniyandi, M. Ma, K. Suzuki, N. Gurusamy, and K. Watanabe. 2011. Depletion of 14-3-3 protein exacerbates cardiac oxidative stress, inflammation and remodeling process via modulation of MAPK/NF-kB signaling pathways after streptozotocin-induced diabetes mellitus. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 28: 911–922.

    Article  CAS  Google Scholar 

  11. Zuo, S., Y. Xue, S. Tang, J. Yao, R. Du, P. Yang, and X. Chen. 2010. 14-3-3 epsilon dynamically interacts with key components of mitogen-activated protein kinase signal module for selective modulation of the TNF-alpha-induced time course-dependent NF-kappaB activity. Journal of Proteome Research 9: 3465–3478.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J.J., J.S. Lee, M.N. Cui, H.H. Yun, H.Y. Kim, S.H. Lee, and J.H. Lee. 2014. BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death & Disease 5: e1537.

    Article  CAS  Google Scholar 

  13. Shen, J., F. Jiang, Y. Yang, G. Huang, F. Pu, Q. Liu, L. Chen, L. Ju, M. Lu, F. Zhou, C. Zhang, X. Luo, X. Yang, C. Jiao, X. Li, Z. Li, Y. Li, and J. Zhang. 2016. 14-3-3eta is a novel growth-promoting and angiogenic factor in hepatocellular carcinoma. Journal of Hepatology 65: 953–962.

    Article  CAS  PubMed  Google Scholar 

  14. De Valck, D., K. Heyninck, W. Van Criekinge, P. Vandenabeele, W. Fiers, and R. Beyaert. 1997. A20 inhibits NF-kappaB activation independently of binding to 14-3-3 proteins. Biochemical and Biophysical Research Communications 238: 590–594.

    Article  PubMed  Google Scholar 

  15. Ben-Addi, A., A. Mambole-Dema, C. Brender, S.R. Martin, J. Janzen, S. Kjaer, S.J. Smerdon, and S.C. Ley. 2014. IkappaB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases. Proceedings of the National Academy of Sciences of the United States of America 111: E2394–E2403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xue, D., Y. Yang, Y. Liu, P. Wang, Y. Dai, Q. Liu, L. Chen, J. Shen, H. Ju, Y. Li, and Z. Tan. 2016. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3zeta/STAT3/HIF-1alpha/VEGF signaling. Oncotarget 7: 79805–79813.

    PubMed  PubMed Central  Google Scholar 

  17. Balupillai, A., R.N. Prasad, K. Ramasamy, G. Muthusamy, M. Shanmugham, K. Govindasamy, and S. Gunaseelan. 2015. Caffeic acid inhibits UVB-induced inflammation and photocarcinogenesis through activation of peroxisome proliferator-activated receptor-gamma in mouse skin. Photochemistry and Photobiology 91: 1458–1468.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., F. Jiang, L. Chen, Y. Yang, S. Cao, Y. Ye, X. Wang, J. Mu, Z. Li, and L. Li. 2015. Blockage of TGFbeta-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio 5: 466–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pittala, V., L. Salerno, G. Romeo, M.A. Siracusa, M.N. Modica, G.L. Romano, S. Salomone, F. Drago, and C. Bucolo. 2015. Effects of novel hybrids of caffeic acid phenethyl ester and NSAIDs on experimental ocular inflammation. European Journal of Pharmacology 752: 78–83.

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y., L.J. Chen, F. Jiang, Y. Yang, X.X. Wang, Z. Zhang, Z. Li, and L. Li. 2015. Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas 48: 502–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeon, Y.D., J.Y. Kee, D.S. Kim, Y.H. Han, S.H. Kim, S.J. Kim, J.Y. Um, and S.H. Hong. 2015. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. BMC Complementary and Alternative Medicine 15: 196.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu, M., S. Song, H. Li, X. Jiang, P. Yin, C. Wan, X. Liu, F. Liu, and J. Xu. 2014. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. Journal of Dairy Science 97: 2856–2865.

    Article  CAS  PubMed  Google Scholar 

  23. Kasinski, A., X. Dong, F.R. Khuri, J. Boss, and H. Fu. 2014. Transcriptional regulation of YWHAZ, the gene encoding 14-3-3zeta. PloS One 9: e93480.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, L., M. Lu, M. Yi, L. Chen, J. Shen, Z. Li, L. Li, Y. Yang, J. Zhang, and Y. Li. 2015. Caffeic acid attenuates the autocrine IL-6 in hepatocellular carcinoma via the epigenetic silencing of the NF-κB-IL-6-STAT-3 feedback loop. RSC Advances 5: 52952–52957.

    Article  CAS  Google Scholar 

  25. Gu, W., Y. Yang, C. Zhang, Y. Zhang, L. Chen, J. Shen, G. Li, Z. Li, L. Li, Y. Li, and H. Dong. 2016. Caffeic acid attenuates the angiogenic function of hepatocellular carcinoma cells via reduction in JNK-1-mediated HIF-1α stabilization in hypoxia. RSC Advances 6: 82774–82782.

    Article  CAS  Google Scholar 

  26. Yang, N., J.J. Shi, F.P. Wu, M. Li, X. Zhang, Y.P. Li, S. Zhai, X.L. Jia, and S.S. Dang. 2017. Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway. World Journal of Gastroenterology 23: 1203–1214.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang, Y., Y. Li, K. Wang, Y. Wang, W. Yin, and L. Li. 2013. P38/NF-kappaB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PloS One 8: e58915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choudhary, S., A. Mourya, S. Ahuja, S.P. Sah, and A. Kumar. 2016. Plausible anti-inflammatory mechanism of resveratrol and caffeic acid against chronic stress-induced insulin resistance in mice. Inflammopharmacology 24: 347–361.

    Article  CAS  PubMed  Google Scholar 

  29. Basu Mallik, S., J. Mudgal, M. Nampoothiri, S. Hall, S.A. Dukie, G. Grant, C.M. Rao, and D. Arora. 2016. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neuroscience Letters 632: 218–223.

    Article  CAS  PubMed  Google Scholar 

  30. Agilan, B., N. Rajendra Prasad, G. Kanimozhi, R. Karthikeyan, M. Ganesan, S. Mohana, D. Velmurugan, and D. Ananthakrishnan. 2016. Caffeic acid inhibits chronic UVB-induced cellular proliferation through JAK-STAT3 signaling in mouse skin. Photochemistry and Photobiology 92: 467–474.

    Article  CAS  PubMed  Google Scholar 

  31. Cai, H., X. Huang, S. Xu, H. Shen, P. Zhang, Y. Huang, J. Jiang, Y. Sun, B. Jiang, X. Wu, H. Yao, and J. Xu. 2016. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. European Journal of Medicinal Chemistry 108: 89–103.

    Article  CAS  PubMed  Google Scholar 

  32. ten Dijke, P., and H. van Dam. 2015. 14-3-3zeta turns TGF-beta to the dark side. Cancer Cell 27: 151–153.

    Article  PubMed  Google Scholar 

  33. Wu, Y.J., Y.J. Jan, B.S. Ko, S.M. Liang, and J.Y. Liou. 2015. Involvement of 14-3-3 proteins in regulating tumor progression of hepatocellular carcinoma. Cancer 7: 1022–1036.

    Article  Google Scholar 

  34. Aitken, A. 2011. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Seminars in Cell & Developmental Biology 22: 673–680.

    Article  CAS  Google Scholar 

  35. Xu, J., S. Acharya, O. Sahin, Q. Zhang, Y. Saito, J. Yao, H. Wang, P. Li, L. Zhang, F.J. Lowery, W.L. Kuo, Y. Xiao, J. Ensor, A.A. Sahin, X.H. Zhang, M.C. Hung, J.D. Zhang, and D. Yu. 2015. 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 27: 177–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hermeking, H. 2003. The 14-3-3 cancer connection. Nature Reviews Cancer 3: 931–943.

    Article  CAS  PubMed  Google Scholar 

  37. Lin, M., C.D. Morrison, S. Jones, N. Mohamed, J. Bacher, and C. Plass. 2009. Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. International Journal of Cancer Journal International du Cancer 125: 603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neal, C.L., J. Yao, W. Yang, X. Zhou, N.T. Nguyen, J. Lu, C.G. Danes, H. Guo, K.H. Lan, J. Ensor, W. Hittelman, M.C. Hung, and D. Yu. 2009. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Research 69: 3425–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aitken, A. 2006. 14-3-3 proteins: a historic overview. Seminars in Cancer Biology 16: 162–172.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81602841 to Ye Yang and 81572325 to Jianping Zhang) and the Technology Development Fund of Nanjing Medical University (2014NJMU002 to Ye Yang and HL201417 to Zhiping Chu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Zhang, Ye Yang or Zhiping Chu.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Electronic Supplementary Material

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Dai, Y., Xu, M. et al. The Attenuation of 14-3-3ζ is Involved in the Caffeic Acid-Blocked Lipopolysaccharide-Stimulated Inflammatory Response in RAW264.7 Macrophages. Inflammation 40, 1753–1760 (2017). https://doi.org/10.1007/s10753-017-0618-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-017-0618-1

KEY WORDS

Navigation