Skip to main content
Log in

Metabarcoding meiofauna biodiversity assessment in four beaches of Northern Colombia: effects of sampling protocols and primer choice

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 12 May 2021

This article has been updated

Abstract

Environmental DNA (eDNA) metabarcoding can enhance understanding of global biodiversity by making it possible to study taxonomic groups that are difficult to sample. However, experimental choices made when generating eDNA data can impact biodiversity surveys and must be carefully considered during study design. Here, we explored the impact of DNA extraction protocol and metabarcode choice on recovery of meiofauna DNA from sand. We extracted DNA from untreated sand and from sand treated with either Ludox or MgCl2 and amplified DNA using the 18S and CO1 metabarcodes. We found differences in species composition and richness both between metabarcodes and among sampling strategies, confirming the sensitivity of the experiments to both parameters. Combining data from multiple barcodes and from multiple extraction protocols increased recovered meiofaunal taxonomic diversity. Future metabarcoding studies and meta-analyses should consider the effects of sampling protocols on biodiversity. Our results also highlight the need to continue to improve existing reference databases of morphological and molecular characterization of meiofauna, in particular of the tropics, which are poorly represented in existing databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All raw sequencing data from this study have been deposited in the NCBI Sequence Read Archive (SRA) under BioProject accession number PRJNA694867 (BioSample accessions SAMN17575766– SAMN17575777). All reference databases, taxonomic assignments of Amplicon Sequence Variants, as well as all scripts are available in Zenodo (http://doi.org/10.5281/zenodo.4588923).

Change history

References

  • Alberdi A, O. Aizpurua, M.T.P Gilbert & K. Bohmann, 2017. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9: 134–147.

    Article  Google Scholar 

  • Arbeláez- Cortés, E., 2013. Knowledge of Colombian biodiversity: published and indexed. Biodiversity Conservation, 22: 2875–2906.

    Article  Google Scholar 

  • Appeltans, W., S.T. Ahyong, G. Anderson, M.V. Angel, T. Artois, N. Bailly, R. Bamber, A. Barber, I. Bartsch, A. Berta, M. Błażewicz-Paszkowycz, P. Bock, G. Boxshall, C.B. Boyko, S.N. Brandão, R.A. Bray, N.L. Bruce, S.D. Cairns, T.-Y. Chan, L. Cheng, A.G. Collins, T. Cribb, M. Curini-Galletti, F. Dahdouh-Guebas, P.J.F. Davie, M.N. Dawson, O. De Clerck, W. Decock, S. De Grave, N.J. de Voogd, D.P. Domning, C.C. Emig, C. Erséus, W. Eschmeyer, K. Fauchald, D.G. Fautin, S.W. Feist, C.H.J.M. Fransen, H. Furuya, O. Garcia-Alvarez, S. Gerken, D. Gibson, A. Gittenberger, S. Gofas, L. Gómez-Daglio, D.P. Gordon, M.D. Guiry, F. Hernandez, B.W. Hoeksema, R.R. Hopcroft, D. Jaume, P. Kirk, N. Koedam, S. Koenemann, J.B. Kolb, R.M. Kristensen, A. Kroh, G. Lambert, D.B. Lazarus, R. Lemaitre, M. Longshaw, J. Lowry, E. Macpherson, L.P. Madin, C. Mah, G. Mapstone, P.A. McLaughlin, J. Mees, K. Meland, C.G. Messing, C.E. Mills, T.N. Molodtsova, R. Mooi, B. Neuhaus, P.K.L. Ng, C. Nielsen, J. Norenburg, D.M. Opresko, M. Osawa, G. Paulay, W. Perrin, J.F. Pilger, G.C.B. Poore, P. Pugh, G.B. Read, J.D. Reimer, M. Rius, R.M. Rocha, J.I. Saiz-Salinas, V. Scarabino, B. Schierwater, A. Schmidt-Rhaesa, K.E. Schnabel, M. Schotte, P. Schuchert, E. Schwabe, H. Segers, C. Self-Sullivan, N. Shenkar, V. Siegel, W. Sterrer, S. Stöhr, B. Swalla, M.L. Tasker, E.V. Thuesen, T. Timm, M.A. Todaro, X. Turon, S. Tyler, P. Uetz, J. van der Land, B. Vanhoorne, L.P. van Ofwegen, R.W.M. van Soest, J. Vanaverbeke, G. Walker-Smith, T.C. Walter, A. Warren, G.C. Williams, S.P. Wilson, M.J. Costello, 2012. The magnitude of global marine species diversity. Current Biology 22: 2189–2202.

    Article  CAS  PubMed  Google Scholar 

  • Atherton, S. & U. Jondelius, 2020. Biodiversity between sand grains: Meiofauna composition across southern and western Sweden assessed by metabarcoding. Biodiversity Data Journal. 8:e51813.

    Article  PubMed  PubMed Central  Google Scholar 

  • Balsamo, M., T. Artois, J.P.S. Smith, M.A. Todaro, L. Guidi, B.S. Leander & N.W.L. Van Steenkiste, 2020. The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). Hydrobiologia 847: 2613–2644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartsch, I., 1996. New records of Actacarus from the Caribbean area and notes on the subfamily Actacarinae and its species (Arachnida: Acari: Halacaridae). Senckenbergiana Biologica 75: 229–241.

    Google Scholar 

  • Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57: 289−300.

    Article  Google Scholar 

  • Bik, H.M., K.M. Halanych, J. Sharma & W.K. Thomas, 2012a. Dramatic Shifts in Benthic Microbial Eukaryote Communities following the Deepwater Horizon Oil Spill. PLoS One 7 e38550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bik, H.M., W.A.Y. Sung, P. De Ley, J.G. Baldwin, J. Sharma, A. Rocha-Olivares & W.K. Thomas, 2012b. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Molecular Ecology 21: 1048−1059.

    Article  PubMed  Google Scholar 

  • Blouin, M.S. 2000. Brief communication. Neutrality tests on mtDNA: unusual results from nematodes. Journal of Heredity 91:156–158.

    Article  CAS  Google Scholar 

  • Blouin, M.S., C.A. Yowell, C.H. Courtney & J.B. Dame, 1998. Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Molecular Biology and Evolution 15: 1719–1727.

    Article  CAS  PubMed  Google Scholar 

  • Bonaglia, S., F.J.A. Nascimento, M. Bartoli, I. Klawonn & V. Brüchert, 2014. Meiofauna increases bacterial denitrification in marine sediments. Nature Communications 5: 5133.

    Article  CAS  PubMed  Google Scholar 

  • Bongers, T. & Ferris H, 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14(6): 224–228

    Article  CAS  Google Scholar 

  • Brannock, P.M. & K.M. Halanych, 2015. Meiofaunal community analysis by high-throughput sequencing: comparison of extraction, quality filtering, and clustering methods. Marine Genomics 23: 67-75.

    Article  PubMed  Google Scholar 

  • Clare, E.L., F.J.J. Chain, J.E. Littlefair, M.E. Cristescu & Deiner, K, 2016. The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data 1. Genome 59, 981–990.

    Article  PubMed  Google Scholar 

  • Chang, J.J.M., Ip, Y.C.A., Bauman, A.G., H. Danwei, 2020. MinION-in-ARMS: Nanopore Sequencing to Expedite Barcoding of Specimen-Rich Macrofaunal Samples From Autonomous Reef Monitoring Structures. Frontiers in Marine Science 7:448.

    Article  Google Scholar 

  • Creer, S., V.G. Fonseca, D.L. Poraziska, R.M. Giblin-Davis, W. Sung, D.M. Power, M. Packer, G.R. Carvalho, M.L. Blaxter, P.J.D. Lambshead & W.K. Thomas, 2010. Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19: 4–20.

    Article  PubMed  Google Scholar 

  • Curd, E.E., Z. Gold, G.S. Kandlikar, J. Gomer, M. Ogden, T. O’Connell, L. Pipes, T.M. Schweizer, L. Rabichow, M. Lin, B. Shi, P.H. Barber, N. Kraft, R. Wayne & R.S. Meyer, 2019. Anacapa Toolkit: an environmental DNA toolkit for processing multilocus metabarcode datasets. Methods in Ecology and Evolution 10: 1469–1475.

    Article  Google Scholar 

  • Curry C, J. Gibson, S. Shokralla, M. Hajibabaei & D. Baird, 2018. Identifying North American freshwater invertebrates using DNA barcodes: are existing COI sequence libraries fit for purpose? Freshwater Science 37 (1): 178–189.

    Article  Google Scholar 

  • Davis, N.M., D.M. Proctor, S.P. Holmes, D.A. Relman & B.J. Callahan, 2018. Simple statistical identification and removal of contaminant sequences in marker‐gene and metagenomics data. Microbiome 6 :2-14.

    Article  Google Scholar 

  • Deiner, K., J.-C. Walser, E. Mächler, F. & Altermatt, 2015. Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biology Conservation 183:53–63.

    Article  Google Scholar 

  • De Jonge, V. N. & Bouwman, L. A. 1977. A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Marine Biology 42(2): 143–148.

    Article  Google Scholar 

  • Estevens, A. & V. Genevois, 2006. Os nematódeos e sua importância nos ecossistemas marinhos. Floresta e Ambiente 13: 113–120.

    Google Scholar 

  • Faria, L.C. de, M. Di Domenico, S.C.S. Andrade, M.C. dos Santos, G. Fonseca, J. Zanol & A.C.Z. Amaral, 2018. The use of metabarcoding for meiofauna ecological patterns assessment. Marine Environmental Research 140: 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Fenchel, T. M., 1978. The ecology of micro-and meiobenthos. Annual Review of Ecology and Systematics 9: 99–121.

    Article  Google Scholar 

  • Fais, M., S. Duarte, P.E. Vieira, R. Sousa, M. Hajibabaei, C.A. Canchaya & F.O. Costa, 2020. Small-scale spatial variation of meiofaunal communities in Lima estuary (NW Portugal) assessed through metabarcoding. Estuarine, Coastal and Shelf Science 238: 106683. https://doi.org/10.1016/j.ecss.2020.106683.

    Article  CAS  Google Scholar 

  • Fonseca, V.G., G.R. Carvalho, W. Sung, H.F. Johnson, D.M. Power, S.P. Neill, M. Packer, M.L. Blaxter, P.J.D. Lambshead, W.K. Thomas & S. Creer, 2010. Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications 1: 98.

    Article  CAS  PubMed  Google Scholar 

  • Fonseca, V.G., G.R. Carvalho, B. Nichols, C. Quince, H.F. Johnson, S.P. Neill, J.D. Lambshead, W.K. Thomas, D.M. Power & S. Creer, 2014. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecology and Biogeography 23: 1293–1302.

    Article  Google Scholar 

  • Fonseca, V.G., F. Sinniger, J.M. Gaspar, C. Quince, S. Creer, D.M. Power, L.S. Peck & M.S. Clark, 2017. Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Scientific Reports 7: 6094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, X., H. Lin, K. Revanna, & Q. Dong, 2017. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinformatics, 18: 247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller, J., C. Meyer, M. Parker, & H. Hawk, 2013. Redesign of PCR primers for mitochondrial cytochrome coxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13:851–861.

    Article  CAS  PubMed  Google Scholar 

  • George K.H, 2013. Faunistic research on metazoan meiofauna from seamounts-a review. Meiofauna Marina, 20:1-32.

    Google Scholar 

  • Gheskiere, T., M. Vincx, J.M. Weslawski, F. Scapini & S. Degraer, 2005. Meiofauna as descriptor of tourism-induced changes at sandy beaches. Marine Environmental Research 60: 245–265.

    Article  CAS  PubMed  Google Scholar 

  • Giere, O., 2009. Meiobenthology: The microscopic motile fauna of aquatic sediments., Second Edi. ed. Springer-Verlag, Berlin.

    Google Scholar 

  • Giere, O., 2019. Perspectives in Meiobenthology. Reviews, Reflections and Conclusions. Springer, Berlin.

    Book  Google Scholar 

  • Guardiola, M., M.J. Uriz, P. Taberlet, E. Coissac, O.S. Wangensteen & X. Turon, 2015. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE 10: e0139633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haenel, Q., O. Holovachov, U. Jondelius, P. Sundberg & S.J. Bourlat, 2017. NGS-based biodiversity and community structure analysis of meiofaunal eukaryotes in shell sand from Hållö island, Smögen, and soft mud from Gullmarn Fjord, Sweden. Biodiversity Data Journal e12731–e12731.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajibabaei, M., T.M. Porter, C.V. Robinson, D.J. Baird, S. Shokralla & M.T.G. Wright, 2019. Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples. PLoS One 14:e0225409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert, P. D. N., A.Cywinska, S. L. Ball & J. R. DeWaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270: 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans, S.M., H.L. Buckley & G. Lear, 2018. Optimal extraction methods for the simultaneous analysis of DNA from diverse organisms and sample types. Molecular Ecology Resources 18: 557–569.

    Article  CAS  PubMed  Google Scholar 

  • Higgins, R. P. & H. Thiel (eds), 1988. Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, London.

    Google Scholar 

  • Hsieh, T.C., K.H. Ma, K.H. & A. Chao, 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456.

    Article  Google Scholar 

  • Hummon, W., 1974. Intertidal marine gastrotricha from Colombia. Bulletin of Marine Science. 24: 396-408.

    Google Scholar 

  • Kandlikar, G.S., Z.J. Gold, M.C. Cowen, R.S. Meyer, A.C. Freise, N.J.B. Kraft, J. Moberg-Parker, J. Sprague, D.J. Kushner & E.E.Curd, 2018. Ranacapa: an R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000 Research 7: 1-19.

    Article  Google Scholar 

  • Kennedy, A.D. & C.A. Jacoby, 1999. Biological indicators of marine environmental health: meiofauna – a neglected benthic component?. Environmental Monitoring and Assessessment 54: 47–68.

    Article  Google Scholar 

  • Kitahashi, T., S. Sugime, K. Inomata, M. Nishijima, S. Kato, & H. Yamamoto, 2020. Meiofaunal diversity at a seamount in the Pacific Ocean: a comprehensive study using environmental DNA and RNA. Deep Sea Research Part I: Oceanographic Research Papers. https://doi.org/10.1016/j.dsr.2020.103253

  • Klunder, L., G.C.A. Duineveld, M.S.S., Lavaleye, H.W., van der Veer, P.J., Palsbøll, & van Bleijswijk, J.D.L. 2019. Diversity of Wadden Sea macrofauna and meiofauna communities highest in DNA from extractions preceded by cell lysis. Journal Sea Research 152:101764.

    Article  Google Scholar 

  • Lagos, A.M., M.V. Leon, S. Quiroga & A. Martinez, 2018. Interstitial annelids from the Caribbean Coast of Colombia. Revista de Biologia Tropical 66: 658-673.

    Article  Google Scholar 

  • Lallias, D., J.G. Hiddink, V.G. Fonseca, J.M. Gaspar, W. Sung, S.P. Neill, N. Barnes, T. Ferrero, N. Hall, P.J.D. Lambshead, M. Packer, W.K. Thomas & S. Creer, 2015. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. The ISME Journal.9: 208–1221.

    Article  Google Scholar 

  • Langmead, B. & S. L. Salzberg, 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leasi, F., J.L. Sevigny, E.M. Laflamme, T. Artois, M. Curini-Galletti, A. de Jesus Navarrete, M. Di Domenico, F. Goetz, J.A. Hall, R. Hochberg, K.M. Jörger, U. Jondelius, M.A. Todaro, H.H. Wirshing, J.L. Norenburg & W.K. Thomas, 2018. Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Communications Biology 1: 112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lejzerowicz, F., P. Esling, L. Pillet, T.A. Wilding, K.D. Black & J. Pawlowski, 2015. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Scientific Reports 5: 13932.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leray, M. & Knowlton, N. 2016. Censusing marine eukaryotic diversity in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B., Biological Sciences. 371: 20150331. https://doi.org/10.1098/rstb.2015.0331.

    Article  Google Scholar 

  • Leray, M., J.Y. Yang, C.P. Meyer, S.C. Mills, N. Agudelo, V. Ranwez, J.T. Boehm & R.J. Machida, 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10: 2-14.

    Article  CAS  Google Scholar 

  • Lobo, J., P.M. Costa, M.A.L. Teixeira, M.S.G. Ferreira, M.H. Costa & F.O. Costa, 2013. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecology 13: 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Escardó, D., J. Paps, C. de Vargas, R. Massana, I. Ruiz-Trillo & J. del Campo, 2018. Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Science Reports 8: 9106.

    Article  CAS  Google Scholar 

  • Lorenzen, S., 1976a. Desmodoridae (nematoden) mit extrem lange spicula aus South America. Mitteilungen aus dem Instituto Colombo-Alemán Investigaciones Científicas Punta Betín 8: 63–78.

    Google Scholar 

  • Lorenzen, S., 1976b. Calomicrolaimus rugatus n. gen., n.sp. (Desmodoridae, nematodos) in Sandy beaches . Mitteilungen aus dem Instituto Colombo-Alemán Investigaciones Científicas Punta Betín 8: 79–82. https://www.oceandocs.org/bitstream/handle/1834/3283/nematodos.pdf?sequence=1

  • Love, I.M., W. Huber & S. Anders, 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maria, T.F. J. Vanaverbeke, A., Vanreusel & A.M. Estevens, 2016. Sandy beaches: state of the art of nematode ecology. Anais da Academia Brasileira de Ciências 88 (3): 1635-1653.

    Article  PubMed  Google Scholar 

  • Martínez, A., E.M Eckert, T. Artois, G. Careddu, M. Cascu, M. Curini-Galletti, V. Gazale, S. Gobert, V.N., Ivanenko, U. Jondelius, M. Marzano, G. Pesole, A. Zanello, A.M. Todaro & Fontaneto D, 2005. Human access impacts biodiversity of microscopic animals in sandy beaches. Communication Biology 3:175.

    Article  Google Scholar 

  • Moreno, M., L. Vezzulli, V. Marin, P. Laconi, G. Albertelli & M. Fabiano, 2008. The use of meiofauna diversity as an indicator of pollution in harbours. ICES Journal of Marine Sciences 65: 1428–1435.

    Article  CAS  Google Scholar 

  • Montagna, P.A., J.G. Baguley, C. Hsiang & M.G. Reuscher, 2017. Comparison of sampling methods for deep-sea infauna. Limnology and Oceanography 15 (2): 166–183.

    Google Scholar 

  • McMurdie, P.J. & S., Holmes, 2013. phyloseq: an R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 8, e61217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray D.C., M.L. Coghlan & M. Bunce, 2015. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS ONE 10(4): e0124671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento, F.J., D. Lallias, H.M. Bik & S. Creer, 2018. Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Scientific Reports, 8(1): 1–12.

    Article  CAS  Google Scholar 

  • Nichols, R.V., C. Vollmers, L.A. Newsom, Y. Wang, P. D. Heintzman, M. Leighton, R.E. Green & Beth Shapiro, 2018. Minimizing polymerase biases in metabarcoding. Molecular Ecology Resources 8: 927-39.

    Article  CAS  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens & H. Wagner, 2019. Package ‘vegan’, community ecology package. Version 1.15-1.

  • Osorio-Dualiby, D. & R. Álvarez-León, 2011. Caracterización del meiobentos en sectores de influencia costera de dos empresas ubicadas en la zona industrial de Mamonal. Arquivos de Ciências do Mar 44: 81–96. http://www.repositorio.ufc.br/handle/riufc/8675

  • Pardo, F. & R.M. Kristensen, 2013. First record of Loricifera from the Iberian Peninsula, with the description of Rugiloricus manuelae sp. nov., (Loricifera, Pliciloricidae). Helgoland Marine Research 67: 623-638.

    Article  Google Scholar 

  • Pearman, J.K., X. Irigoien & S. Carvalho, 2016. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea. Marine Genomics 26: 29–39.

    Article  PubMed  Google Scholar 

  • Pearman, J.K., Keeley, N.B., Wood, S.A., Laroche, O., Zaiko, A., Thomson-Laing, G., Biessy, L., Atalah, J., & X. Pochon, 2020. Comparing sediment DNA extraction methods for assessing organic enrichment associated with marine aquaculture. PeerJ 8:e1023.

    Article  Google Scholar 

  • Ptatscheck, C., S. Gehner, & W. Traunspurger, 2020. Should we redefine meiofaunal organisms? The impact of mesh size on collection of meiofauna with special regard to nematodes. Aquatic Ecology 54:1135–1143.

    Article  Google Scholar 

  • Somerfield, P. & R. Warwick, 2013. Meiofauna techniques. In: I.A. Eleftheriou (eds), Methods for the Study of Marine Benthos. John Wiley & Sons, Ltd, Chichester: 253–284.

    Chapter  Google Scholar 

  • Sørensen, M.V. & F. Pardos, 2008. Kinorhynch systematics and biology – an introduction to the study of kinorhynchs, inclusive identification keys to the genera. In: F. Pfeil (eds), Meiofauna Marina. Peif Verlag, Munich: 21-73.

    Google Scholar 

  • Srichandan, S., S.K. Baliarsingh, S. Prakash, A.A. Lotliker, C. Parida & K.C. Sahu, 2019. Seasonal dynamics of phytoplankton in response to environmental variables in contrasting coastal ecosystems. Environmental Science Pollution Research 26: 12025–12041.

    Article  CAS  PubMed  Google Scholar 

  • Ssekagiri, A., W.T. Sloan & U.Z. Ijaz, 2018. MicrobiomeSeq: An R Package for Microbial-Community Analysis in an Environmental Context.

  • Sterrer, W., 1998. Gnathostomulida from the (Sub)Tropical Northwestern Atlantic. Studies on the Natural History of the Caribbean Region 74: 1-178.

    Google Scholar 

  • Tang C.Q., F., Leasi, U. Obertegger, A. Kieneke, T.G., Barraclough & D. Fontaneto, 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the United States of America, 109:16208–16212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Todaro, M.A., J.A. Sibaja-Cordero, O.A. Segura-Bermúdez, G. Coto-Delgado, N. Goebel-Otárola, J. D. Barquero, M. Cullell-Delgado & M. Dal Zotto, 2019. An introduction to the study of Gastrotricha, with a taxonomic key to families and genera of the group. Diversity 11:17.

    Article  Google Scholar 

  • Vamos, E.E., V. Elbrecht & F. Leese, 2017. Short COI markers for freshwater macroinvertebrate metabarcoding. Metabarcoding and Metagenomics 1: e14625.

    Article  Google Scholar 

  • Van der Loos, L.M. & Nijland, R, 2020. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Molecular Ecology. https://doi.org/10.1111/mec.15592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigand, A. & J. Macher, 2018. A DNA metabarcoding protocol for hyporheic freshwater meiofauna: evaluating highly degenerate COI primers and replication strategy. Metabarcoding and Metagenomics 2: 1–15.

    Article  Google Scholar 

  • Wickham, H., 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer, Berlin.

    Book  Google Scholar 

  • Yin, S., P. Tan, C. Yuan, J. Hu & X. Liu, 2017. Seasonal dynamics of meiofaunal distribution in the Dagu River Estuary, Jiaozhou Bay, China. Acta Oceanologica Sinica 36: 79–86.

    Article  CAS  Google Scholar 

  • Zhang, G.K., F.J.J. Chain, C.L. Abbott & M.E. Cristescu, 2018. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evolutionary Applications 11:901-1914.

    Article  CAS  Google Scholar 

  • Zeppilli, D.J. Sarrazin, D. Leduc, P.M. Arbizu, D. Fontaneto, C. Fontanier, A.J. Gooday, R.M. Kristensen, V.N. Ivanenko, M.V. Sørensen, A. Vanreusel, J. Thébault, M. Mea, N. Allio, T. Andro, A. Arvigo, J. Castrec, M. Danielo, V. Foulon, R. Fumeron, L. Hermabessiere, V. Hulot, James, T.R. Langonne-Augen, T. Le Bot, M. Long, D. Mahabror, Q. Morel, M. Pantalos, E. Pouplard, L. Raimondeau, A. Rio-Cabello, S. Seite, G. Traisnel, K. Urvoy, T. Van Der Stegen, M. Weyand & Fernandes, 2015. Is the meiofauna a good indicator for climate change and anthropogenic impacts?. Marine Biodiversity 45:505–535.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Maria Victoria Leon, Daniel Giraldo, and Angie Colorado for helping with the collection and processing of samples. This work was supported by a Fulbright visitor research fellowship to Lyda R. Castro and by Fondo Patrimonial de Investigación Fonciencias 2019, Universidad del Magdalena.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. SYQ and AML collected the material; LRC and SC generated the molecular data; LRC, SC, SS, and RSM contributed to the analysis of the data. All the authors contributed to the interpretation of the results. LRC wrote the first draft of the manuscript and all authors contributed to writing the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lyda R. Castro.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest regarding the publication of this paper.

Additional information

Handling editor: Cécile Fauvelot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the cited reference for Fais et al. 2020 was incorrect and the name of the used DNA extraction kit has been corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2021_4576_MOESM1_ESM.xlsx

Supplementary file1 (XLSX 82 kb) Online Resource 1 Taxonomy tables for 18S and CO1 showing observed taxa and their read counts by sample. Read counts are totals after decontamination.

10750_2021_4576_MOESM2_ESM.pdf

Supplementary file2 (PDF 330 kb) Online Resource 2 Barplots of rarefied relative abundance for datasets from 18S and CO1 metabarcode total data as well as datasets filtered to only contain meiofauna. The top 21 taxa are defined. This plot includes local contribution to beta diversity statistics on the proportion of unique taxa in a sample compared to the rest of the samples in its locality

Supplementary file3 (PDF 156 kb) Online Resource 3 Heatmaps of phylum by samples, labeled by sampling type.

10750_2021_4576_MOESM4_ESM.pdf

Supplementary file4 (PDF 233 kb) Online Resource 4 Rarefication curves of 18S and CO1 using total and meiofauna datasets showing the number of taxa observed as a function of sequence depth (number of reads).

10750_2021_4576_MOESM5_ESM.pdf

Supplementary file5 (PDF 174 kb) Online Resource 5 Species accumulation curves obtained with the 18S and CO1 total datasets in four beaches of northern Colombia showing interpolated (sample size-based rarefaction) species richness and extrapolated species richness (dashed lines).

Supplementary file6 (XLSX 22 kb) Online Resource 6 iNEXT asymptotic diversity estimates along with related statistics.

10750_2021_4576_MOESM7_ESM.pdf

Supplementary file7 (PDF 283 kb) Online Resource 7 DeSeq2 plots obtained using the meiofauna datasets with the 18S and CO1 metabarcodes. Plot titles indicate the comparison of overrepresented reads.

10750_2021_4576_MOESM8_ESM.xlsx

Supplementary file8 (XLSX 53 kb) Online Resource 8 DESeq2 results showing taxa overrepresented in one sample preparation technique over another (see tab label). Negative values indicate underrepresentation.

10750_2021_4576_MOESM9_ESM.xlsx

Supplementary file9 (XLSX 19 kb) Online Resource 9 Alpha diversity statistics using Shannon, Observed, Chao and Simpson indexes calculated per technique (Sand, MgCl2, Ludox) and Locality (Santa Marta, Rodadero, Monoguaca, Sisiguaca) using 18S and CO1 complete and meiofauna datasets. B. Significant differences among categories were calculated using Kruskal-Wallis and post hoc Dunn test with Benjamini-Hochberg adjustment (adjP < 0.05 considered significant).

10750_2021_4576_MOESM10_ESM.xlsx

Supplementary file10 (XLSX 10 kb) Online Resource 10 Beta Diversity Adonis test results showing significant effects of technique, locality, and their interactions on Jaccard Distance composition.

10750_2021_4576_MOESM11_ESM.xlsx

Supplementary file11 (XLSX 51 kb) Online Resource 11 Blast results obtained from up to 50 sequences from all species found in the area (Table 2), including percentages of identity to each species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L.R., Meyer, R.S., Shapiro, B. et al. Metabarcoding meiofauna biodiversity assessment in four beaches of Northern Colombia: effects of sampling protocols and primer choice. Hydrobiologia 848, 3407–3426 (2021). https://doi.org/10.1007/s10750-021-04576-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04576-z

Keywords

Navigation