Skip to main content
Log in

Modeling the life history of sessile rotifers: larval substratum selection through reproduction

  • ROTIFERA XV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Larvae … are indeed not helpless, for they are endowed with the power of choice, and with a period of time during which that choice may be made. — Wilson (1952).

Abstract

Although the theoretical underpinnings of habitat selection by marine invertebrate larvae have been well studied, this theory has been neglected for freshwater sessile rotifers. To study how substratum selection affects larval fitness, we developed a dynamic model to examine influences of three elements of larval life (survival, substratum acceptance, substratum encounter probability) and substratum-dependent reproductive success in adults. Monte Carlo simulation models were run using an initial cohort of larvae. Our Basic Model assessed fitness as simply settling on a substratum using only the larval elements and revealed statistically greatest fitness when swimming speed decreased with age and when substratum preference was constant or exhibited mid-age competence. The Reproductive Model assessed fitness (mean number of offspring adult−1) as a function of substratum. We compared reproduction on neutral substrata to substrata where quality varied and separately as a function of adult population density: coloniality (synergism) versus competition. The model showed fitness was statistically greatest when larval swimming speed decreased with age and when coloniality increased reproduction. We also explored conditions where populations of planktonic adults could survive. The model is applicable to sessile organisms and may be modified to examine other life history activities including selection of mates, prey, or territory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, J. D. & B. Pernet, 2007. Intermediate modes of larval development: bridging the gap between planktotrophy and lecithotrophy. Evolution and Development 9: 643–653.

    PubMed  Google Scholar 

  • Armstrong, R. A., 2014. When to use the Bonferroni correction. Ophthalmic Physiol Opt 34: 502–508.

    PubMed  Google Scholar 

  • Beach, N. W., 1960. A study of the planktonic rotifers of the Ocqueoc River system, Presque Isle County, Michigan. Ecological Monographs 30: 339–358.

    Google Scholar 

  • Bērziņš, B., 1951. On the Collothecacean Rotatoria with special reference to the species found in the Aneboda district, Sweden. Arkiv för Zoologi 1: 565–592.

    Google Scholar 

  • Burgess, S. C., S. P. Hart & D. J. Marshall, 2009. Pre-settlement behavior in larval bryozoans: the roles of larval age and size. Biological Bulletin 216: 344–354.

    PubMed  Google Scholar 

  • Burgess, S. C., E. A. Treml & D. J. Marshall, 2012. How do dispersal costs and habitat selection influence realized population connectivity? Ecology 93: 1378–1387.

    PubMed  Google Scholar 

  • Butler, N. M., 1983. Substrate selection and larval settlement by Cupelopagis vorax. Hydrobiologia 104: 317–323.

    Google Scholar 

  • Chia, F. S. & M. E. Rice (eds), 1978. Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York.

    Google Scholar 

  • Chia, F.-S., G. Gibson & P.-Y. Qian, 1996. Poecilogony as a reproductive strategy of marine invertebrates. Oceanologia Acta 19: 203–208. http://archimer.ifremer.fr/doc/00094/20178.

  • Crisp, D. J. & P. S. Meadows, 1963. Adsorbed layers: the stimulus to settlement in barnacles. Proceedings of the Royal Society of London B 158: 364–387.

    CAS  Google Scholar 

  • Daly, E. A., R. D. Brodeur & L. A. Weitkamp, 2009. Ontogenetic shifts in diets of juvenile and subadult Coho and Chinook salmon in coastal marine waters: important for marine survival? Transactions of the American Fisheries Society 138: 1420–1438.

    Google Scholar 

  • Decho, A. W. & J. W. Fleeger, 1988. Ontogenetic feeding shifts in the meiobenthic harpacticoid copepod Nitocra lacustris. Marine Biology 97: 191–197.

    Google Scholar 

  • Delbecque, E. J. P. & R. E. M. Suykerbuyk, 1988. A comparison of the periphyton of Nuphar lutea and Nymphaea alba. Spatial and temporal changes in the occurrence of sessile microfauna. Archiv für Hydrobiologie 112: 541–566.

    Google Scholar 

  • Dera, G., G. J. Eble, P. Neige & B. David, 2008. The flourishing diversity of models in theoretical morphology: from current practices to future macroevolutionary and bioenvironmental challenges. Paleobiology 34: 301–317.

    Google Scholar 

  • Despland, E. & S. Hamzeh, 2004. Ontogenetic changes in social behaviour in the forest tent caterpillar, Malacosoma disstria. Behavioral Ecology and Sociobiology 56: 177–184.

    Google Scholar 

  • de Roos, A. M. & L. Persson, 2013. Population and Community Ecology of Ontogenetic Development. Princeton University Press, Princeton.

    Google Scholar 

  • Diéguez, M. C. & J. J. Gilbert, 2011. Daphnia–rotifer interactions in Patagonian communities. Hydrobiologia 662: 189–195.

    Google Scholar 

  • Doyle, R. W., 1975. Settlement of planktonic larvae: a theory of habitat selection in varying environments. The American Naturalist 109: 113–126.

    Google Scholar 

  • Dražina, T., A. Korša, M. Špoljar, I. Maguire & G. I. V. Klobučar, 2018. Epifauna of native and alien freshwater crayfish species (Crustacea:Decapoda): a host-specific community? Freshwater Science 37: (in press). https://doi.org/10.1086/698764.

    Google Scholar 

  • Edmondson, W. T., 1944. Ecological studies of sessile Rotatoria, Part I. Factors affecting distribution. Ecological Monographs 14: 32–66.

    Google Scholar 

  • Edmondson, W. T., 1945. Ecological studies of sessile Rotatoria, Part II. Dynamics of populations and social structure. Ecological Monographs 15: 141–172.

    Google Scholar 

  • Edmondson, W. T., 1949. A formula key to the Rotatorian genus Ptygura. Transactions of the American Microscopical Society 68: 127–135.

    Google Scholar 

  • Fontaneto, D. & R. Ambrosini, 2010. Spatial niche partitioning in epibiont rotifers on the waterlouse Asellus aquaticus. Limnology and Oceanography 55: 1327–1337.

    Google Scholar 

  • Fontaneto, D., G. Melone & R. L. Wallace, 2003. Morphology of Floscularia ringens (Rotifera, Monogononta) from egg to adult. Invertebrate Biology 122: 231–240.

    Google Scholar 

  • Fussmann, G. F., S. P. Ellner, K. W. Shertzer & N. G. Hairston Jr., 2000. Crossing the Hopf bifurcation in a live predator-prey system. Science 290: 1358–1360.

    CAS  PubMed  Google Scholar 

  • Gilbert, J. J., (this volume). Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia. https://doi.org/10.1007/s10750-018-3805-7.

  • Green, J., 2003. Associations of planktonic and periphytic rotifers in a tropical swamp, the Okavango Delta, Southern Africa. Hydrobiologia 490: 197–209.

    Google Scholar 

  • Hadfield, M. G., 1998. The D P Wilson Lecture. Research on settlement and metamorphosis of marine invertebrate larvae: past, present and future. Biofouling 12: 9–29.

    Google Scholar 

  • Hentschel, B. T., 1998. Intraspecific variations in δ 13C indicate ontogenetic diet changes in deposit-feeding polychaetes. Ecology 79: 1357–1370.

    Google Scholar 

  • Hochberg, A., 2014. Comparative myoanatomy of collothecid rotifers (Rotifera: Gnesiotrocha: Collothecaceae) with details on larval metamorphosis and development of the infundibulum in species of Stephanoceros. MS thesis. University of Massachusetts at Lowell, Lowell, MA.

  • Hochberg, R., H. Yang, E. J. Walsh & R. L. Wallace, (this volume). Systematic distribution of birefringent bodies in Rotifera and first evidence of their ultrastructure in Acyclus inquietus (Gnesiotrocha: Collothecaceae). Hydrobiologia.

  • Hodin, J., M. C. Ferner, G. Ng, C. J. Lowe & B. Gaylord, 2015. Rethinking competence in marine life cycles: ontogenetic changes in the settlement response of sand dollar larvae exposed to turbulence. Royal Society Open Science 2: 150114.

    PubMed  PubMed Central  Google Scholar 

  • Iyer, N. & T. R. Rao, 1995. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313(314): 377–380.

    Google Scholar 

  • Jersabek, C. D. & M. F. Leitner, 2015. The Rotifer World Catalog. World Wide Web electronic publication. http://www.rotifera.hausdernatur.at/. Accessed 11 July 2018.

  • Kempf, S. C., 1981. Long-lived larvae of the gastropod Aplysia juliana: do they disperse and metamorphose or just slowly fade away? Marine Ecology Progress Series 6: 61–65.

    Google Scholar 

  • Kinlan, B. P., S. D. Gaines & S. E. Lester, 2005. Propagule dispersal and the scales of marine community process. Diversity and Distributions 11: 139–148.

    Google Scholar 

  • Koehl, M. A. R. & M. G. Hadfield, 2010. Hydrodynamics of larval settlement from a larva’s point of view. Integrative and Comparative Biology 50: 539–551.

    CAS  PubMed  Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. 2 volumes. Gebrüder Borntraeger, Stuttgart.

  • Kovach-Orr, C. & G. F. Fussmann, 2013. Evolutionary and plastic rescue in multitrophic model communities. Philosophical Transactions of the Royal Society B 368(1610): 20120084.

    Google Scholar 

  • Kuczyńska-Kippen, N., 2003. The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hydrobiologia 506–509: 327–331.

    Google Scholar 

  • Kuczyńska-Kippen, N., 2005. On body size and habitat selection in rotifers in a macrophye-dominated lake Budzyńskie, Poland. Aquatic Ecology 39: 447–454.

    Google Scholar 

  • Kuczyńska-Kippen, N. M. & B. Nagengast, 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203–212.

    Google Scholar 

  • Kutikova, L. A., 1995. Larval metamorphosis in sessile rotifers. Hydrobiologia 313(314): 133–138.

    Google Scholar 

  • Levin, L. A. & T. S. Bridges, 1995. Pattern and diversity and and reproduction in development. In McEdward, L. R. (ed.), Ecology of Marine Invertebrate Larvae., Marine Science Series CRC Press Inc, Boca Raton: 1–48.

    Google Scholar 

  • Lucena-Moya, P. & I. C. Duggan, 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45: 279–287.

    Google Scholar 

  • Marechal, J. P., C. Hellio, M. Sebire & A. S. Clare, 2004. Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0. Biofouling 20: 211–217.

    PubMed  Google Scholar 

  • Marshall, D. J., T. F. Bolton & M. J. Keough, 2003. Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84: 3131–3137.

    Google Scholar 

  • Marshall, D. J. & M. J. Keough, 2003. Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Marine Ecology Progess Series 255: 145–153.

    Google Scholar 

  • May, L., 1989. Epizoic and parasitic rotifers. Hydrobiologia 186(187): 59–67.

    Google Scholar 

  • McEdward, L. R. (ed.), 1995. Ecology of Marine Invertebrate Larvae. CRC Press Inc, Boca Raton.

    Google Scholar 

  • Meksuwan, P., P. Pholpunthin & H. H. Segers, 2015. Molecular phylogeny confirms Conochilidae as ingroup of Flosculariidae (Rotifera, Gnesiotrocha). Zoologica Scripta 44: 562–573.

    Google Scholar 

  • Meksuwan, P., P. Pholpunthin, E. J. Walsh, H. Segers & R. L. Wallace, 2014. Nestedness in sessile and periphytic rotifer communities: a meta-analysis. International Review of Hydrobiology 99: 48–57.

    Google Scholar 

  • Mooney, D. D. & R. J. Swift, 1999. A course in Mathematical Modeling, Vol. 13. Mathematical Association of America, Washington, DC.

    Google Scholar 

  • Murray, J., 1913. VI.—South American Rotifera. Journal of the Royal Microscopical Society 33(3): 229–246.

    Google Scholar 

  • Nilsen, H. C. & R. W. Larimore, 1973. Establishment of invertebrate communities on log substrates in the Kaskaskia River, Illinois. Ecology 54(2): 366–374.

    Google Scholar 

  • Olson, R. R., 1985. The consequences of short-distance larval dispersal in a sessile marine invertebrate. Ecology 66(1): 30–39.

    Google Scholar 

  • Pannell, D. J., 1997. Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agricultural Economics 16: 139–152.

    Google Scholar 

  • Pawlik, J. R., 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanography and Marine Biology: An Annual Review 30: 273–335.

    Google Scholar 

  • Pechenik, J. A., 1980. Growth and energy balance during the larval lives of three prosobranch gastropods. Journal of Experimental Marine Biology and Ecology 44: 1–28.

    CAS  Google Scholar 

  • Pechenik, J. A., 1999. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Marine Ecology Progress Series 177: 269–297.

    Google Scholar 

  • Pechenik, J. A., 2006. Larval experience and latent effects—metamorphosis is not a new beginning. Integrative and Comparative Biology 46: 323–333.

    PubMed  Google Scholar 

  • Richards, R. A., 1992. Habitat selection and predator avoidance: ontogenetic shifts in habitat use by the Jonah crab Cancer borealis (Stimpson). Journal of Experimental Marine Biology and Ecology 156: 187–197.

    Google Scholar 

  • Pineda, J. & H. Caswell, 1997. Dependence of settlement rate on suitable substrate area. Marine Biology 129: 541–548.

    Google Scholar 

  • Roughgarden, J., Y. Iwasa & C. Baxter, 1985. Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67.

    Google Scholar 

  • Rumrill, S. S., 1990. Natural mortality of marine invertebrate larvae. Ophelia 32: 163–198.

    Google Scholar 

  • Sarma, S. S. S., M. A. Jiménez-Santos, S. Nandini & R. L. Wallace, 2017. Demography of the sessile rotifers, Limnias ceratophylli and Limnias melicerta (Rotifera: Gnesiotrocha), in relation to food (Chlorella vulgaris Beijerinck, 1890) density. Hydrobiologia 796: 181–189.

    CAS  Google Scholar 

  • Schriever, T. A. & D. D. Williams, 2013. Ontogenetic and individual diet variation in amphibian larvae across an environmental gradient. Freshwater Biology 58: 223–236.

    CAS  Google Scholar 

  • Segers, H., W. H. De Smet, C. Fischer, D. Fontaneto, E. Michaloudi, R. L. Wallace & C. D. Jersabek, 2012. Towards a list of available names in zoology, partim phylum Rotifera. Zootaxa 3179: 61–68.

    Google Scholar 

  • Segers, H., P. Meksuwan & L.-O. Sanoamuang, 2010. New records of sessile rotifers (Phylum Rotifera: Flosculariacea, Collothecacea) from Southeast Asia. Belgian Journal of Zoology 140: 235–240.

    Google Scholar 

  • Sendacz, S., S. Caleffi & J. Santos-Soares, 2006. Zooplankton biomass of reservoirs in different trophic conditions in the state of São Paulo, Brazil. Brazilian Journal of Biology 66: 337–350.

    CAS  Google Scholar 

  • Serra, M., H. A. Smith, J. S. Weitz & T. W. Snell, 2011. Analysing threshold effects in the sexual dynamics of cyclically parthenogenetic rotifer populations. Hydrobiologia 662: 121–130.

    CAS  Google Scholar 

  • Shanks, A. L., 2009. Pelagic larval duration and dispersal distance revisited. The Biological Bulletin 216: 373–385.

    PubMed  Google Scholar 

  • Shertzer, K. W., S. P. Ellner, G. F. Fussmann & N. G. Hairston Jr., 2002. Predator–prey cycles in an aquatic microcosm: testing hypotheses of mechanisms. Journal of Animal Ecology 71: 802–815.

    Google Scholar 

  • Strathmann, R. R., 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16: 339–361.

    Google Scholar 

  • Streiner, D. L. & G. R. Norman, 2011. Correction for multiple testing: is there a resolution? Chest 140: 16–18.

    PubMed  Google Scholar 

  • Tendler, A., A. Mayo & U. Alon, 2015. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Systems Biology 9: 12.

    PubMed  PubMed Central  Google Scholar 

  • Thiyagarajan, V., 2010. A review on the role of chemical cues in habitat selection by barnacles: new insights from larval proteomics. Journal of Experimental Marine Biology and Ecology 392: 22–36.

    Google Scholar 

  • Toonen, R. J. & A. J. Tyre, 2007. If larvae were smart: a simple model for optimal settlement behavior of competent larvae. Marine Ecology Progress Series 349: 3–61.

    Google Scholar 

  • Vadstein, O., L. M. Olsen & T. Andersen, 2012. Prey-predator dynamics in rotifers: density-dependent consequences of spatial heterogeneity due to surface attachment. Ecology 93: 1795–1801.

    PubMed  Google Scholar 

  • van der Hammen, T., M. Montserrat, M. W. Sabelis, A. M. de Roos & A. Janssen, 2012. Whether ideal free or not, predatory mites distribute so as to maximize reproduction. Oecologia 169: 95–104.

    PubMed  Google Scholar 

  • Vance, R. R., 1973. More on reproductive strategies in marine benthic invertebrates. The American Naturalist 107: 353–361.

    Google Scholar 

  • Wallace, R. L., 1975. Larval behavior of the sessile rotifer Ptygura beauchampi (Edmondson). Verhandlungen Internationale Vereinigung Limnologie 19: 2811–2815.

    Google Scholar 

  • Wallace, R. L., 1977a. Distribution of sessile rotifers in an acid bog pond. Archiv für Hydrobiologie 79: 478–505.

    Google Scholar 

  • Wallace, R. L., 1977b. Substrate discrimination by larvae of the sessile rotifer Ptygura beauchampi Edmondson. Freshwater Biology 7: 301–309.

    Google Scholar 

  • Wallace, R. L., 1978. Substrate selection by larvae of the sessile rotifer Ptygura beauchampi. Ecology 59: 221–227.

    Google Scholar 

  • Wallace, R. L., 1980. Ecology of sessile rotifers. Hydrobiologia 73: 181–193.

    Google Scholar 

  • Wallace, R. L., 1987. Coloniality in the phylum Rotifera. Hydrobiologia 147: 141–155.

    Google Scholar 

  • Wallace, R. L., 1993. Presence of anisotropic (birefringent) crystalline structures in embryonic and juvenile monogonont rotifers. Hydrobiologia 255(256): 71–76.

    Google Scholar 

  • Wallace, R. L. & W. T. Edmondson, 1986. Mechanism and adaptive significance of substrate selection by a sessile rotifer. Ecology 67: 314–323.

    Google Scholar 

  • Wallace, R. L., J. J. Cipro & R. W. Grubbs, 1998. Relative investment in offspring by sessile Rotifera. Hydrobiologia 387(388): 311–316.

    Google Scholar 

  • Wallace, R. L., A. Korbacheh & E. J. Walsh, 2018. Key to the currently recognized species of Limnias Schrank, 1803 (Rotifera, Monogononta, Gnesiotrocha, Flosculariidae). Zootaxa 4442: 307–318.

    PubMed  Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Volume 1: Biology, Ecology and Systematics, 2nd ed. Backhuys Publishers, Leiden.

    Google Scholar 

  • Wallace, R. L., T. W. Snell & H. A. Smith, 2015. Phylum Rotifera. In Thorp, J. H. & D. C. Rogers (eds), Thorp and Covich’s Freshwater Invertebrates, Vol. I., Ecology and General Biology Elsevier, Waltham, MA: 225–271.

    Google Scholar 

  • Walsh, E. J., 1995. Habitat-specific predation susceptibilities of a littoral rotifer to two invertebrate predators. Hydrobiologia 313(314): 205–211.

    Google Scholar 

  • Werner, E. E., 1988. Size, scaling, and the evolution of complex life cycles. In Perrson, L. & B. Ebenmann (eds), Size-Structured Populations: Ecology and Evolution. Springer, Berlin: 60–81.

    Google Scholar 

  • Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15: 393–425.

    Google Scholar 

  • Wilson, D. P., 1952. The influence of the nature of the substratum on the metamorphosis of the larvae of marine animals especially the larvae of Ophelia bicornis Savigny. Annales de l’Institut Océanographique 27: 49–156.

    Google Scholar 

  • Woods, H. A. & R. Wilson, 2013. Ontogenetic changes in the body temperature of an insect herbivore. Functional Ecology 27: 1322–1331.

    Google Scholar 

  • Wright, H. G. S., 1959. Development of the peduncle in a sessile rotifer. Journal of the Quekett Microscopical Club. Series 4 5: 231–234.

    Google Scholar 

  • Young, C. M., 1990. Larval ecology of marine invertebrates: a sesquicentennial history. Ophelia 32: 1–48.

    Google Scholar 

Download references

Acknowledgements

We thank Diego Fontaneto, Holger Herlyn, Mark Kainz, Menuma Khan, McKenzie Lamb, George Wittler, and three anonymous reviewers for their comments that improved this manuscript. This research was supported in part by funds for faculty development (Ripon College), from the National Science Foundation: DEB 1257068 (EJW), 1257110 (RH), and 1257116 (RLW), and by Grant 5G12MD007592 from the National Institutes on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Wallace.

Additional information

Guest editors: Steven A. J. Declerck, Diego Fontaneto, Rick Hochberg & Terry W. Snell / Crossing Disciplinary Borders in Rotifer Research

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, A.N., Hochberg, R., Walsh, E.J. et al. Modeling the life history of sessile rotifers: larval substratum selection through reproduction. Hydrobiologia 844, 67–82 (2019). https://doi.org/10.1007/s10750-018-3802-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3802-x

Keywords

Navigation